Advertisement

Arabic Morphological Analysis and Disambiguation Using a Possibilistic Classifier

  • Raja Ayed
  • Ibrahim Bounhas
  • Bilel Elayeb
  • Fabrice Evrard
  • Narjès Bellamine Ben Saoud
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7390)

Abstract

This paper proposes and experiments a new approach for morphological feature disambiguation of non-vocalized Arabic texts using a possibilistic classifier. The main idea is to learn contextual dependencies between features from vocalized texts and exploit this knowledge to disambiguate non-vocalized ones. We use possibility theory as a means to model imprecision in the training and testing steps, since the context is itself ambiguous. We also investigate the dependency between various features focusing on the Part-Of-Speech (POS).

Keywords

Morphological Analysis Morphological Disambiguation Possibilistic Classification Morphological features 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buckwalter, T.: Buckwalter Arabic Morphological Analyzer Version 2.0. Linguistic Data Consortium (LDC) catalogue number LDC2004L02 (2004) ISBN 1-58563-324-0Google Scholar
  2. 2.
    Haouari, B., Ben Amor, N., Elouedi, Z., Mellouli, K.: Naïve Possibilistic Network Classifiers. Fuzzy Sets and Systems 160, 3224–3238 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Harrag, F., Hamdi-Cherif, A., Al-Salman, A.M.S., Elyas El-Qawasmeh, E.: Experiments in Improvement of Arabic Information Retrieval. In: 3rd International Conference on Arabic Language Processing (CITALA), Rabat, Morocco, pp. 71–81 (2009)Google Scholar
  4. 4.
    Bounhas, I., Elayeb, B., Evrard, F., Slimani, Y.: Toward a Computer Study of The Reliability of Arabic Stories. Journal of the American Society for Information Science and Technology 61, 1686–1705 (2010)Google Scholar
  5. 5.
    Al-Echikh, A.A.: Encyclopedia of The Six Major Citation Collections, Dar-esselem, Ryadh, KSA (1998)Google Scholar
  6. 6.
    Roth, R., Rambow, O., Habash, N., Diab, M., Rudin, C.: Arabic Morphological Tagging, Diacritization, and Lemmatization Using Lexeme Models and Feature Ranking. In: Proceedings of Association for Computational Linguistics (ACL), Columbus, Ohio, USA, pp. 573–580 (2008)Google Scholar
  7. 7.
    Debili, F., Achour, H., Souissi, E.: La langue arabe et l’ordinateur: de l’étiquetage grammatical à la voyellation automatique. In: IRMC (2002) (in French)Google Scholar
  8. 8.
    Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum Press, New York (1994)Google Scholar
  9. 9.
    Merialdo, B.: Tagging English Text with A Probabilistic Model. Computational Linguistics 20, 155–171 (1994)Google Scholar
  10. 10.
    Daoud, D.: Synchronized Morphological and Syntactic Disambiguation for Arabic. Advances in Computational Linguistics 41, 73–86 (2009)Google Scholar
  11. 11.
    Khoja, S.: APT: Arabic Part-of-speech Tagger. In: Proc. Student Workshop at the Second Meeting of the North American Association for Computational Linguistics, Carnegie Mellon University, Pennsylvania, USA (2001)Google Scholar
  12. 12.
    Diab, M., Hacioglu, K., Jurafsky, D.: Automatic Tagging of Arabic Text: From Raw Text to Base Phrase Chunks. In: Proc. Human Language Technology Conference / North American Chapter of the Association for Computational Linguistics Annual Meeting (HLT-NAACL 2004), Boston, USA, pp. 149–152 (2004)Google Scholar
  13. 13.
    Habash, N., Rambow, O.: Arabic Diacritization Through Full Morphological Tagging. In: Proc. Human Language Technology Conference / North American Chapter of the Association for Computational Linguistics Annual Meeting (HLT-NAACL 2007), Companion Volume, Rochester, NY, USA, pp. 53–56 (2007)Google Scholar
  14. 14.
    Habash, N., Rambow, O., Roth, R.: MADA+TOKAN: A Toolkit for Arabic Tokenization, Diacritization, Morphological Disambiguation, POS Tagging, Stemming and Lemmatization. In: Proceedings of the 2nd International Conference on Arabic Language Resources and Tools (MEDAR), Cairo, Egypt, pp. 102–109 (2009)Google Scholar
  15. 15.
    Hoceini, Y., Cheragui, M.A., Abbas, M.: Towards a New Approach for Disambiguation in NLP by Multiple Criterian Decision-Aid. The Prague Bulletin of Mathematical Linguistics 95, 19–32 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Raja Ayed
    • 1
  • Ibrahim Bounhas
    • 3
  • Bilel Elayeb
    • 1
    • 2
  • Fabrice Evrard
    • 2
  • Narjès Bellamine Ben Saoud
    • 1
  1. 1.RIADI Research LaboratoryENSI Manouba University 2010Tunisia
  2. 2.IRIT-ENSEEIHTToulouse Cedex 7France
  3. 3.Department of Computer Science, Faculty of Sciences of TunisUniversity of TunisTunisTunisia

Personalised recommendations