Advertisement

Gabor Feature-Based Fast Neighborhood Component Analysis for Face Recognition

  • Faqiang Wang
  • Hongzhi Zhang
  • Kuanquan Wang
  • Wangmeng Zuo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7390)

Abstract

Subspace methods have been very successful in face recognition. Neighborhood components analysis (NCA), one popular subspace method, however, cannot outperform discriminative common vectors (DCV) when applied to face recognition. In this paper, we proposed a Gabor feature-based fast NCA method (Gabor-FNCA). First, we extract multi-scale and multi-orientation Gabor features for more robust and enhanced face recognition. Then, we claimed that the FNCA learning problem would be ill-posed for high dimensional data dimensionality reduction. To address this problem, we first use principal component analysis (PCA) to transform the data in a low-dimensional subspace, and then use the FNCA model which including a Frobenius norm regularizer to learn the linear projection matrix. Experimental results on the ORL and FERET face datasets shows that the proposed Gabor-FNCA method is effective for face recognition.

Keywords

Face recognition Subspace method Neighborhood component analysis Discriminative common vectors Metric learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face Recognition: A Literature Survey. ACM Computing Surveys 35, 399–458 (2003)CrossRefGoogle Scholar
  2. 2.
    Abate, A.F., Nappi, M., Riccio, D., Sabatino, G.: 2D and 3D face recognition: A survey. Pattern Recognition Letters 28(14), 1885–1906 (2007)CrossRefGoogle Scholar
  3. 3.
    Shakhnarovich, G., Moghaddam, B.: Face Recognition in Subspaces. In: Li, S.Z., Jain, A.K. (eds.) Hand-book of Face Recognition. Springer (2004)Google Scholar
  4. 4.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)CrossRefGoogle Scholar
  5. 5.
    Belhumeur, V., Hespanha, J., Kriegman, D.: Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans. Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)CrossRefGoogle Scholar
  6. 6.
    Yang, J., Frangi, A.F., Yang, J., Zhang, D., Jin, Z.: KPCA plus LDA: A Com-plete Kernel Fisher Discriminant Framework for Feature Extraction and Recognition. IEEE Trans. Pattern Analysis and Machine Intelligence 27(2), 230–244 (2005)CrossRefGoogle Scholar
  7. 7.
    He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.J.: Face Recognition Using Laplacianfaces. IEEE Trans. Pattern Analysis and Machine Intelligence 27(3), 328–340 (2005)CrossRefGoogle Scholar
  8. 8.
    Yan, S., Xu, D., Zhang, B., Yang, Q., Zhang, H., Lin, S.: Graph Embedding and Extensions: A General Framework for Dimensionality Reduction. IEEE Trans. Pattern Analysis and Machine Intelligence 29(1), 40–51 (2007)CrossRefGoogle Scholar
  9. 9.
    Liu, C., Wechsler, H.: Gabor Feature Based Classification Using The Enhanced Fisher Linear Discriminant Model for Face Recognition. IEEE Trans. Image Processing 11(4), 467–476 (2002)CrossRefGoogle Scholar
  10. 10.
    Weinberger, K.Q., Blitzer, J., Saul, L.K.: Distance Metric Learning for Large Margin Nearest Neighbor Classification. Advances in Neural Information Processing Systems 18, 1473–1480 (2006)Google Scholar
  11. 11.
    Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.: Neighbourhood components analysis. Advances in Neural Information Processing Systems 17, 513–520 (2005)Google Scholar
  12. 12.
    Torresani, L., Lee, K.-C.: Large margin component analysis. Advances in Neural Information Processing Systems 19, 1385–1392 (2007)Google Scholar
  13. 13.
    Yang, W., Wang, K., Zuo, W.: Fast Neighbourhood Component Analysis. Neurocomputing 83, 31–37 (2012)CrossRefGoogle Scholar
  14. 14.
    Liu, J., Chen, S.: Discriminant common vectors versus neighbourhood components analysis and Laplacianfaces: A Comparative Study in Small Sample Size Problem. Image and Vision Computing 24(3), 249–262 (2006)CrossRefGoogle Scholar
  15. 15.
    Cevikalp, H., Neamtu, M., Wilkes, M., Barkana, A.: Discriminative Common Vectors for Face Recognition. IEEE Trans. Pattern Analysis and Machine Intelligence 27(1), 4–13 (2005)CrossRefGoogle Scholar
  16. 16.
    Weinberger, K.Q., Saul, L.K.: Distance Metric Learning for Large Margin Nearest Neighbor Classification. Journal of Machine Learning Research 10, 207–244 (2009)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Faqiang Wang
    • 1
  • Hongzhi Zhang
    • 1
  • Kuanquan Wang
    • 1
  • Wangmeng Zuo
    • 1
  1. 1.Biocomputing Research Centre, School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina

Personalised recommendations