Advertisement

Evolving Decision Strategies for Computational Intelligence Agents

  • Roman Neruda
  • Martin Šlapák
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7390)

Abstract

An adaptive control system for computational intelligence agent within a data mining multi-agent system is presented. As opposed to other approaches concerning a fixed control mechanism, the presented approach is based on evolutionary trained decission trees. This leads to control approach created adaptively based on data tasks the agent encounters during its adaptive phase. A pilot implementation within a JADE-based data mining system illustrates the suitability of such approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weiss, G. (ed.): Multiagent Systems. MIT Press (1999)Google Scholar
  2. 2.
    Zhang, Z., Zhang, C.: Agent-Based Hybrid Intelligent Systems. Springer (2004)Google Scholar
  3. 3.
    Neruda, R., Beuster, G.: Emerging Hybrid Computational Models. In: Huang, D.-S., Li, K., Irwin, G.W. (eds.) ICIC 2006. LNCS (LNAI), vol. 4114, pp. 379–389. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Neruda, R., Krušina, P., Petrova, Z.: Towards soft computing agents. Neural Network World 10(5), 859–868 (2000)Google Scholar
  5. 5.
    Aha, D.W., Wettschereck, D.: Case-based learning: Beyond classification of feature vectors (1997)Google Scholar
  6. 6.
    Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological variations, and system approaches. AICom — Artificial Intelligence Communications 7(1), 39–59 (1994)Google Scholar
  7. 7.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook. Cambridge University Press (2003)Google Scholar
  8. 8.
    Diamantini, C., Potena, D., Storti, E.: KDDONTO: An ontology for discovery and composition of KDD algorithms. In: ECML/PKDD 2009 Workshop on Third Generation Data Mining: Towards Service-oriented Knowledge Discovery, pp. 13–24 (2009)Google Scholar
  9. 9.
    Šlapák, M.: Genetics in decision behaviour of computational agents. In: Proceedings of Mendel 2011-17th International Conference on Soft Computing (2011)Google Scholar
  10. 10.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection (Complex Adaptive Systems). The MIT Press (1992)Google Scholar
  11. 11.
    Whitley, D.: A genetic algorithm tutorial. Statistics and Computing 4, 65–85 (1994), doi:10.1007/BF00175354CrossRefGoogle Scholar
  12. 12.
    Kazik, O., Peskova, K., Pilt, M., Neruda, R.: Meta learning in multi-agent systems for data mining. In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, vol. 2, pp. 433–434 (2011)Google Scholar
  13. 13.
    Vaculin, R., Neruda, R.: Concept nodes architecture within the Bang3 system. Technical report, Institute of Computer Science, Academy of Science of the Czech Republic (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Roman Neruda
    • 1
  • Martin Šlapák
    • 2
  1. 1.Institute of Computer ScienceAcademy of Sciences of the Czech RepublicPrague 8Czech Republic
  2. 2.Department of Theoretical Computer ScienceFaculty of Information Technology CTU in Prague, Czech RepublicPrague 6Czech Republic

Personalised recommendations