RFID Networks Planning Using BF-PSO

  • Qiwei Gu
  • Kai Yin
  • Ben Niu
  • Hanning Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7390)


RFID network planning (RNP) problem is a core challenge in the widespread application of RFID networks. In this paper, we develop a new mathematical model for planning RFID networks with multiple objectives, including carbon emissions, economic efficiency, load balance, interference between readers and coverage. Bacteria Foraging oriented by Particle Swarm Optimization (BF-PSO) is to solve optimize the proposed model. To demonstrate the effectiveness and efficiency of BF-PSO, the simulation results are compared with Bacteria Foraging Optimization (BFO), a real-coded Genetic Algorithm (RGA) and the Self-adaptive ES (SA-ES) on the RFID network planning problem.


BF-PSO RFID network planning Carbon emissions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hossain, M.M., Prybutok, V.R.: Consumer Acceptance of RFID Technology: An Exploratory Study. Engineering Management 55(2), 316–328 (2008)Google Scholar
  2. 2.
    Chen, H.N., Zhu, Y.L.: RFID Networks Planning Using Evolutionary Algorithms and Swarm Intelligence. In: 4th IEEE International Conference on Wireless Communications. Networking and Mobile Computing, pp. 1–4. IEEE Press, Piscataway (2008)Google Scholar
  3. 3.
    Yang, Y.H., Wu, Y.J., Xia, M., Qin, Z.J.: A RFID Network Planning Method Based on Genetic Algorithm. In: 1st International Conference on Networks Security, Wireless Communications and Trusted Computing, pp. 534–537. IEEE Press, Piscataway (2009)CrossRefGoogle Scholar
  4. 4.
    Forni, F., Giampaolo, E., Marrocco, G.: RFID-network Planning by Particle Swarm Optimization. In: 4th European Conference on Antennas and Propagation, pp. 1–5. IEEE Press, Piscataway (2010)Google Scholar
  5. 5.
    Chen, H.N., Zhu, Y.L., Hu, K.Y.: Multi-colony Bacteria Foraging Optimization with cell-to-cell Communication for RFID Network Planning. Applied Soft Computing 10(2), 539–547 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
  7. 7.
    Korani, W.M., Dorrah, H.T., Emara, H.M.: Bacterial Foraging Oriented by Particle Swarm Optimization Strategy for PID Tuning. In: 8th IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 445–450. IEEE Press, Piscataway (2009)Google Scholar
  8. 8.
    Niu, B., Xue, B., Li, L., Chai, Y.: Symbiotic Multi-swarm PSO for Portfolio Optimization. In: Huang, D.-S., Jo, K.-H., Lee, H.-H., Kang, H.-J., Bevilacqua, V. (eds.) ICIC 2009. LNCS (LNAI), vol. 5755, pp. 776–784. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Niu, B., Wang, H., Tan, L., Xu, J.: Multi-objective Optimization Using BFO Algorithm. In: Huang, D.-S., Gan, Y., Premaratne, P., Han, K. (eds.) ICIC 2011. LNCS, vol. 6840, pp. 582–587. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Qiwei Gu
    • 1
  • Kai Yin
    • 1
  • Ben Niu
    • 1
    • 2
    • 4
  • Hanning Chen
    • 3
  1. 1.College of ManagementShenzhenChina
  2. 2.Hefei Institute of Intelligent Machines, Chinese Academy of SciencesHefeiChina
  3. 3.Shenyang Institute of Automation Chinese Academy of SciencesShenyangChina
  4. 4.Institute for Cultural IndustriesShenzhen UniversityShenzhenChina

Personalised recommendations