Improved MOPSO Based on ε-domination

  • Yanmin Liu
  • Ben Niu
  • Changling Sui
  • Minhui Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7390)


Designing efficient algorithms for multi-objective optimization problems (MOPs) is a very challenging problem. In this paper, based on the previously proposed εDMOPSO, an improved multi-objective PSO with orthogonal design and crossover is proposed. Firstly, the orthogonal design is used to generate the initial swarm, which makes the algorithm evenly scan the feasible solution space to find good points (solution) for the further exploration in subsequent iterations. Secondly, to explore the search space efficiently and get the good solutions in objective space, a new crossover operator is designed. Finally, Simulation experiments on the disabled benchmark problems of εDMOPSO show the proposed strategies are efficient.


Particle Swarm Optimizer orthogonal design crossover operator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liu, Y.M., Zhao, Q.Z.: Self-adaptive Multi-objective Particle Swarm Optimizer Based on ε-domination. Control and Decision 89–95 (2011)Google Scholar
  2. 2.
    Coello, C.A.C., Lechuga, M.S.: MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization. In: IEEE Congress on Evolutionary Computation, Piscataway, New Jersey, pp. 1051–1056. IEEE Press, New York (2002)Google Scholar
  3. 3.
    Stacey, A., Jancic, M., Grundy, I.: Particle Swarm Optimization with Mutation. In: IEEE Congress on Evolutionary Computation, Canberra, Australia, pp. 1425–1430. IEEE Press, New York (2003)Google Scholar
  4. 4.
    Hu, X., Eberhart, R.C.: Multiobjective Optimization Using Dynamic Neighborhood Particle Swarm Optimization. In: Proceedings of the 2002 Congress on Evolutionary, Honolulu, HI, pp. 1677–1681. IEEE Press, New York (2002)Google Scholar
  5. 5.
    Li, X.: A Non-dominated Sorting Particle Swarm Optimizer for Multi-objective Optimization. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 37–48. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Mostaghim, S., Teich, J.: Strategies for Finding Good Local Guides in Multi-objective Particle Swarm Optimization (MOPSO). In: IEEE Swarm Intelligence Symposium, Indianapolis, pp. 26–33. IEEE Press, New York (2003)Google Scholar
  7. 7.
    Huang, V.L., Suganthan, P.N., Liang, J.J.: Comprehensive Learning Particle Swarm Optimizer for Solving Multiobjective Optimization Problems. International Journal of Intelligent Systems 109–226 (2006)Google Scholar
  8. 8.
    Wang, Y.P., Dang, C.Y.: A Clustering Multi-objective Evolutionary Algorithm Based on Orthogonal and Uniform Design. In: IEEE Congress on Evolutionary Computation, Rondheim, pp. 2927–2933. IEEE Press, New York (2009)CrossRefGoogle Scholar
  9. 9.
    Niu, B., Wang, H., Tan, L.J., Xu, J.: Multi-objective Optimization Using BFO Algorithm. In: Huang, D.-S., Gan, Y., Premaratne, P., Han, K. (eds.) ICIC 2011. LNCS (LNBI), vol. 6840, pp. 582–587. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Niu, B., Xue, B., Li, L., Chai, Y.: Symbiotic Multi-swarm PSO for Portfolio Optimization. In: Huang, D.-S., Jo, K.-H., Lee, H.-H., Kang, H.-J., Bevilacqua, V. (eds.) ICIC 2009. LNCS (LNAI), vol. 5755, pp. 776–784. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yanmin Liu
    • 1
  • Ben Niu
    • 2
    • 3
  • Changling Sui
    • 4
  • Minhui Liu
    • 2
  1. 1.Department of MathZunyi Normal CollegeZunyiChina
  2. 2.College of ManagementShenzhen UniversityShenzhenChina
  3. 3.Hefei Institute of Intelligent Machines, CASHefeiChina
  4. 4.Biology DepartmentZunyi Normal CollegeZunyiChina

Personalised recommendations