Advertisement

Using Multiple Objective Functions in the Dynamic Model of Metabolic Networks of Escherichia coli

  • Qing-Hua Zhou
  • Jing Cui
  • Juan Xie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7390)

Abstract

Different objective functions in the dynamic model can explore the diverse properties of the solution space, and a wide variety of capabilities of an organism. In that way, when there is a fact that several conditions can simultaneously achieve the optimality, the multiple objective functions are explored in the dynamic model of metabolic networks naturally. For obtaining the better simulation consequences of the concentrations of glucose and biomass in the metabolism of Escherichia coli, we choose both of the maximal biomass yield and maximal glucose utilization ratio to structure the multiple objective functions. The simulation results of the metabolite concentrations agree well with the experimental results.

Keywords

multiple objective functions dynamic model Escherichia coli unified goal method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fell, D.: Understanding the Control of Metabolism. Portland Press, London (1996)Google Scholar
  2. 2.
    Savageau, M.A., Voit, E.O., Irine, D.H.: Biochemical Systems Theory and Metabolic Control Theory: 1. Fundamental Similarities and Differences. Math. Biosci. 86, 127–145 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Savageau, M.A., Voit, E.O., Irine, D.H.: Biochemical Systems Theory and Metabolic Control Theory: 2. The Role of Summation and Connectivity Relationships. Math. Biosci. 86, 147–169 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Amit, V., Bemhard, O.P.: Stoichiometric Flux Balance Models Quantitatively Predict Growth and Metabolic by-product Secretion in Wild-Type Escherichia ColiW3110. Appl. Environ. Microbiol. 60, 3724–3731 (1994)Google Scholar
  5. 5.
    Mahadevan, R., Edwards, J.S., Doyle, F.J.: Dynamic Flux Balance Analysis of Diauxic Growth in Escherichia coli. Biophy. J. 83, 1331–1340 (2002)CrossRefGoogle Scholar
  6. 6.
    Zhou, Q.H., Wang, D., Xiong, M.M.: Dynamic Flux Balance Analysis of Metabolic Networks Using the Penalty Function Method. In: Proc. of 2007 International Conference on Systems, Man and Cybernetics, Montreal, Canada, October 7-10, pp. 3594–3599 (2007)Google Scholar
  7. 7.
    Zhou, Q.H., Cui, J., Xie, J.: Solving the Dynamic Model of Metabolic Network of Escherichia coli by Adams Methods. Advanced Materials Research 424-425, 900–903 (2012)CrossRefGoogle Scholar
  8. 8.
    Kompala, D.S.: Bacterial Growth on Multiple Substrates. Experimental Verification of Cybernetic Models, Ph. D Thesis, Purdue University, West Lafayette, IN (1984)Google Scholar
  9. 9.
    Varner, J., Ramkrishna, D.: Metabolic Engineering from A Cybernetic Perspective I. Theoretical Preliminaries. Biotechnol. Prog. 15, 407–425 (1999)CrossRefGoogle Scholar
  10. 10.
    Huang, P.: Optimal Theories and Methods, pp. 120–123. Qinghua University Press (2009)Google Scholar
  11. 11.
    Schuetz, R., Kuepfer, L., Sauer, U.: Systematic Evaluation of Objective Functions for Predicting Intracellular Fluxes in Escherichia coli. Bayer Technology Services, Germany (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Qing-Hua Zhou
    • 1
  • Jing Cui
    • 1
  • Juan Xie
    • 1
  1. 1.College of Mathematic and Computer ScienceHebei UniversityBaodingChina

Personalised recommendations