Advertisement

Stability of a Predator-Prey Model with Modified Holling-Type II Functional Response

  • Jia Liu
  • Hua Zhou
  • Kai-yu Tong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7390)

Abstract

A predator-prey model with modified Holling-Type II functional response under Neumann boundary condition is proposed. We show that under some conditions the cross-diffusion can induce the Turing instability of the uniform equilibrium, which is stable for the kinetic system and for the self-diffusion reaction system. Also, the numerical simulation is given in this paper, and verifying the result of the paper is correct.

Keywords

Turing instability self-diffusion cross-diffusion predator-prey 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bazykin, A.D.: Nonlinear Dynamics of Interacting Populations. World Scientific, Singapore (1998)CrossRefGoogle Scholar
  2. 2.
    Holling, C.S.: The Functional Response of Invertebrate Predators to Prey Density. Mem. Ent. Soc. Can. 45, 3–60 (1965)Google Scholar
  3. 3.
    Tanner, J.T.: The Stability and The Intrinsic Growth Rates of Prey and Predator Populations. Ecology 56, 855–867 (1975)CrossRefGoogle Scholar
  4. 4.
    Saez, E., Gonzalez-Olivares, E.: Dynamics of A Predator-Prey Model. SIAM J. Appl. Math. 59, 1867–1878 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Wang, L.C.: Diffusion-Driven Instability in Reaction-Diffusion Systems. J. Math. Anal. Appl. 254, 138–153 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Werner, H., Kwan, L., Peter, K.M.: Network Topology and Turing Instabilities in Small Arrays of Diffusively Coupled Reactors. Phys. Rev. Lett. A. 328, 444–451 (2004)zbMATHGoogle Scholar
  7. 7.
    Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, NewYork (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jia Liu
    • 1
  • Hua Zhou
    • 1
  • Kai-yu Tong
    • 1
  1. 1.School of Mathematics and PhysicsChangzhou UniversityChangzhouChina

Personalised recommendations