Spatial-Based Feature for Locating Objects

  • Lu Cao
  • Yoshinori Kobayashi
  • Yoshinori Kuno
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7390)


In this paper, we discuss how humans locate and detect objects using spatial expressions. Then we propose a spatial-based feature for object localization and recognition tasks. We develop a system that can recognize an object whose positional relation with another object is indicated verbally by a human. Experimental results using two image datasets prepared by the authors confirm the usefulness of the proposed feature.


Spatial-Based Feature Spatial Knowledge Object Localization Pose Estimation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering objects and their localization in images. In: Proceedings of the International Conference on Computer Vision, pp. 370–377. IEEE Press, Beijing (2005)Google Scholar
  2. 2.
    Sivic, J., Russell, B.C., Zisserman, A., Freeman, W.T., Efros, A.A.: Unsupervised Discovery of Visual Object Class Hierarchies. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Alaska (2008)Google Scholar
  3. 3.
    Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: European Conference on Computer Vision, International Workshop on Statistical Learning in Computer Vision, Prague (2004)Google Scholar
  4. 4.
    Jackendoff, R.: Languages of the Mind. The MIT Press (1992)Google Scholar
  5. 5.
    Herskovits, A.: Language and Spatial Cognition: An Inderdisciplinary Study of the Prepositions in English. Cambridge University Press (1986)Google Scholar
  6. 6.
    Levinson, S.C.: Frames of reference and Molyneux’s question: Crosslinguistic evidence. In: Language and Space, pp. 109–170. MIT Press (1999)Google Scholar
  7. 7.
    Hernández, D.: Qualitative Representation of Spatial Knowledge. LNCS, vol. 804. Springer, Heidelberg (1994)zbMATHCrossRefGoogle Scholar
  8. 8.
    Dobnik, S., Pulman, S., Newman, P., Harrison, A.: Teaching a Robot Spatial Expressions. In: Second ACL-SIGSEM, Colchester (2005)Google Scholar
  9. 9.
    Skubic, M., Perzanowski, D., Schultz, A., Adams, W.: Using Spatial Language in a Human-Robot Dialog. In: Proceedings of IEEE International Conference on Robotics and Automation, Washington, D.C. (2002)Google Scholar
  10. 10.
    Moratz, R., Tenbrink, T.: Spatial Reference in Linguistic Human-Robot Interaction: Iterative, Empirically Supported Development of a Model of Projective Relations. In: Spatial Cognition and Computation, vol. 6, pp. 63–106. Lawrence Erlbaum Associates, Inc. (2006)Google Scholar
  11. 11.
    Savarese, S., Li, F.-F.: Multi-view Object Categorization and Pose Estimation. In: Cipolla, R., Battiato, S., Farinella, G.M. (eds.) Computer Vision. SCI, vol. 285, pp. 205–231. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Ozuysal, M., Lepetit, V., Fua, P.: Pose Estimation for category specific multiview object localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami (2009)Google Scholar
  13. 13.
    Bosch, A., Zisserman, A., Munoz, X.: Representing shape with spatial pyramid kernel. In: ACM International Conference on Image and Video Retrieval, pp. 401–408. ACM Press, Amsterdam (2007)Google Scholar
  14. 14.
    Schmidt, G.: Various Views on Spatial Prepositions. AI Magazine (1988)Google Scholar
  15. 15.
    Cao, L., Kobayashi, Y., Kuno, Y.: Spatial Resolution for Robot to Detect Objects. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4546–4553. IEEE Press, Taiwan (2010)Google Scholar
  16. 16.
    Das, D., Kobayashi, Y., Kuno, Y.: Multiple Object Category Detection and Localization Using Generative and Discriminative Models. IEICE Transaction on Information and System 92, 2112–2121 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lu Cao
    • 1
  • Yoshinori Kobayashi
    • 1
    • 2
  • Yoshinori Kuno
    • 1
  1. 1.Saitama UniversitySaitamaJapan
  2. 2.Japan Science and Technology Agency (JST), PRESTOKawaguchiJapan

Personalised recommendations