Soft Rough Sets and Topologies

  • Zhaowen Li
  • Ninghua Gao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7390)


In this paper, we consider a new kind of soft sets. Based on them, we propose soft rough approximations and give their properties. Soft rough sets are defined and their topological structures are obtained. Moreover, we investigate the relationship between soft rough sets and topologies.


Soft sets Soft rough approximations Soft rough sets Topologies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aktas, H., Cagman, N.: Soft Sets and Soft Groups. Inform. Sci. 177, 2726–2735 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Feng, F., Li, C., Davvaz, B., Irfan Ali, M.: Soft Sets Combined with Fuzzy Sets and Rough sets: A Tentative Approach. Soft Comput. 14, 899–911 (2010)zbMATHCrossRefGoogle Scholar
  3. 3.
    Feng, F., Liu, X., Leoreanu-Fotea, V., Jun, Y.: Soft Sets and Soft Rough Sets. Inform. Sci. 181, 1125–1137 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Jiang, Y., Tang, Y., Chen, Q., Wang, J., Tang, S.: Extending soft Sets with Description Logics. Comput. Math. Appl. 59, 2087–2096 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Kondo, M.: On the Structure of Generalized rough sets. Inform. Sci. 176, 589–600 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Molodtsov, D.: Soft Set Theory-first Result. Comput. Math. Appl. 37, 19–31 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Li, Z., Zhang, K.: The Topological Structure on Generalized Approximation Spaces. Acta Math. Appl. Sinica 33, 750–757 (2010)zbMATHGoogle Scholar
  8. 8.
    Maji, P.K., Biswas, R., Roy, A.R.: Fuzzy soft Sets. J. Fuzzy Math. 9, 589–602 (2001)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Boston (1991)zbMATHGoogle Scholar
  10. 10.
    Pawlak, Z., Skowron, A.: Rudiments of Rough Sets. Inform. Sci. 177, 3–27 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Pei, Z., Pei, D., Zheng, L.: Topology vs Generalized Rough Sets. Inter. J. Approx. Reason. 52, 231–239 (2011)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Zhaowen Li
    • 1
  • Ninghua Gao
    • 1
  1. 1.College of Mathematics and Computer ScienceGuangxi University for Nationalities NanningGuangxiP.R. China

Personalised recommendations