Advertisement

An Eigengene-Based Classifier Committee Learning Algorithm for Tumor Classification

  • Zhan-Li Sun
  • Ting-Ting Sun
  • Yang Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7390)

Abstract

This paper presents a tumor classification approach by using eigengene and support vector machine (SVM) based classifier committee learning (CCL) algorithm. In this method, first, multiple sample feature subspaces of gene expression data are extracted by random subspace method. Then, the gene expression data constructed by these subspaces are modeled by independent component analysis (ICA), respectively. And the corresponding eigengene sets are extracted by the ICA algorithm. Finally, Bayesian sum rule (BSR) based SVM CCL algorithm is applied on these feature sets and the unknown labels are predicted. Experimental results on two DNA microarray datasets demonstrate that the proposed method is efficient and feasible for the tumor classification.

Keywords

Gene expression data tumor classification independent component analysis Bayesian sum rule classifier committee learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sun, Z.L.: An Extension of MISEP for Post-nonlinear-linear Mixture Separation. IEEE Transactions on Circuits and Systems Part II: Express Briefs 56(8), 654–658 (2009)CrossRefGoogle Scholar
  2. 2.
    Sun, Z.L., Lam, K.M.: Depth Estimation of Face Images Based on The ConStrained ICA Model. IEEE Transactions on Information Forensics and Security 6(2), 360–370 (2011)CrossRefGoogle Scholar
  3. 3.
    Liebermeister, W.: Linear Modes of Gene Expression Determined by Independent Component analysis. Bioinformatics 18, 51–60 (2002)CrossRefGoogle Scholar
  4. 4.
    Huang, D.S., Zheng, C.H.: Independent Component Analysis-based Penalized Discriminant Method for Tumor Classification Using Gene Expression Data. Bioinformatics 22, 1855–1862 (2006)CrossRefGoogle Scholar
  5. 5.
    Chang, C.C., Lin, C.J.: LIBSVM: A Library for Support Vector Machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm
  6. 6.
    Kittler, J., Hatef, M., Duin, R., Matas, J.: On Combining Classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 226–239 (1998)CrossRefGoogle Scholar
  7. 7.
    Tao, D., Tang, X., Li, X.L., Wu, X.D.: A Symmetric Bagging and Random Subspace for Support Vector Machines-based Relevance Feedback in Image Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 1088–1099 (2006)CrossRefGoogle Scholar
  8. 8.
    Hyvarinen: Fast and Robust Fixed-point Algorithms for Independent Component Analysis. IEEE Transactions on Neural Networks 10, 626–634 (1999)CrossRefGoogle Scholar
  9. 9.
    Alon, U., Barkai, N., Notterman, D.A., et al.: Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and Normal Colon Tissues Probed by Oligonucleotide Arrays. Proceedings of the National Academy of Sciences of the United States of America 96, 6745–6750 (1999)CrossRefGoogle Scholar
  10. 10.
    Golub, T.R., Slonim, D.K., Tamayo, P., et al.: Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science 286, 531–537 (1999)CrossRefGoogle Scholar
  11. 11.
    Ghosh, D.: Penalized Discriminant Methods for The Classification of Tumors from Microarray Experiments. Biometrics 59, 992–1000 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Tibshirani, R., Hastie, T., Narasimhan, B., Chu, G.: Diagnosis of Multiple Cancer Types by Shrunken Centroids of Gene Expression. Proceedings of the National Academy of Sciences of the United States of America 99, 6567–6572 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Zhan-Li Sun
    • 1
  • Ting-Ting Sun
    • 1
  • Yang Liu
    • 1
  1. 1.School of Electrical Engineering and AutomationAnhui UniversityChina

Personalised recommendations