Advertisement

Comparison of Data Exploration Methods and the BLUP Method in Application to the Animals Breeding

  • Paweł Skrobanek
  • Henryk Maciejewski
  • Maciej Dobrowolski
  • Olgierd Unold
  • Ewa Walkowicz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7390)

Abstract

The evaluation of a breeding value is one of the most important elements of a work of a breeder. One of the frequently used method of evaluation is the BLUP Animal Model method (Best Linear Unbiased Prediction). The aim of this study is to evaluate the usefulness of data mining methods applied for the prediction of the breeding value of the planned (yet unborn) offspring. Quality assessment of the results was performed using data from the offspring and to the standard analysis using BLUP method.

The study was conducted with the use of the populations of the Silesian horses.

Keywords

genetic dependencies in data mining biological population data base prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tavernier, A.: Advantages of BLUP Animal Model for Breeding Value Estimation in Horses. Livestock Production Science 2(20), 149–160 (1988)CrossRefGoogle Scholar
  2. 2.
    Databases of Silesian Horses bred (2012), http://silesian.pwr.wroc.pl/database.html
  3. 3.
    Groeneveld, E.: PEST Users’ Manual. Institute of Animal Science, Neustadt. 1–77 (1996)Google Scholar
  4. 4.
    Groeneveld, E., Kovac, M., Wang, T.: PEST, a General Purpose BLUP Package for Multivariate Prediction and Estimation. In: l1th World Congr. Genet. A PP I Livest Prod.Google Scholar
  5. 5.
    Hill, W.G., Thompson, R., Woolliams, J.A. (eds.): Edinburgh, UK, July 23-27, vol. XIII, pp. 488–491 (1990)Google Scholar
  6. 6.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Data Mining, Inference and Prediction. Springer (2002)Google Scholar
  7. 7.
    Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Wadsworth (1984)Google Scholar
  8. 8.
    Walkowicz, E., Unold, O., Maciejewski, H., Skrobanek, P.: Zoometric Indices in Silesian Horses in the Years 1945-2005. Ann. Anim. Sci. 11(4), 555–565 (2011)Google Scholar
  9. 9.
    Garner, S.R., Holmes, G., McQueen, R.J., Witten, I.H.: Machine Learning from Agricultural Databases: practice and experience. J. Computing 6(1a), 69–73 (1997)Google Scholar
  10. 10.
    Bokor, A., Blouin, C., Langlois, B.: Possibility of Selecting Racehorses on Jumping Ability Based on Their Steeplechase Race Results in France, the United Kingdom and Ireland. J. Anim. Breed. Genet. 124(3), 124–132 (2007)CrossRefGoogle Scholar
  11. 11.
    Stewart, I.D., Woolliams, J.A., Brotherstone, S.: Genetic Evaluation of Horses for Performance in Dressage Competitions in Great Britain Original Research Article. Livestock Science 128(1-3), 36–45 (2010)CrossRefGoogle Scholar
  12. 12.
    Sobczyńska, M.: Genetic Parameters Of Racing Performance Indice In Polish Arabian Horses Original Research Article. Livestock Science 131(2-3), 245–249 (2010)CrossRefGoogle Scholar
  13. 13.
    Albertsdóttir, E., Eriksson, S., Sigurdsson, Á., Árnason, T.: Genetic Analysis of ‘breeding field test status’ in Icelandic Horses. Journal of Animal Breeding and Genetics 128, 124–132 (2011)CrossRefGoogle Scholar
  14. 14.
    Braam, Å., Näsholm, A., Roepstorff, L., Philipsson, J.: Genetic Variation in Durability of Swedish Warmblood horses using competition results Original Research Article. Livestock Science 142(1-3), 181–187 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Paweł Skrobanek
    • 1
  • Henryk Maciejewski
    • 1
  • Maciej Dobrowolski
    • 2
  • Olgierd Unold
    • 1
  • Ewa Walkowicz
    • 2
  1. 1.Institute of Computer Engineering, Control and RoboticsWroclaw University of TechnologyWrocławPoland
  2. 2.Department of Horse Breeding and RidingWroclaw University of Environmental and Life SciencesWrocławPoland

Personalised recommendations