A Lateral Inhibitory Spiking Neural Network for Sparse Representation in Visual Cortex

  • Jiqian Liu
  • Yunde Jia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7366)


Sparse representation has been validated to be a common phenomenon in many sensory neural systems, but its underlying neural mechanism still remains unclear. This paper proposes a neurally plausible model towards solving this problem. We find that lateral inhibition is the fundamental neural mechanism for sparse representation in the visual cortex, by which cortical neurons not only compete with each other so that the input signal can be represented sparsely but also cooperate with each other to make the representation more accurate. We integrate this result into the matching pursuit framework, a quite suitable solution for neural implementation, to illustrate how an input signal is sparsely represented in V1. Our simulation results show that lateral inhibition can evidently decrease the average squared error in the representation and then the input signal can be sparsely represented very well by the proposed algorithm.


Input Signal Visual Cortex Basis Vector Lateral Inhibition Sparse Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shannon, C.E., Weaver, W.: The mathematical theory of communication. University of Illinois Press, Urbana (1949)zbMATHGoogle Scholar
  2. 2.
    Shannon, C.E.: Prediction and Entropy of Printed English. Bell Systems Technical Journal 30, 50–64 (1951)zbMATHGoogle Scholar
  3. 3.
    Barlow, H.: Possible principles underlying the transformation of sensory messages. Sensory Communication, 217–234 (1961)Google Scholar
  4. 4.
    Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)CrossRefGoogle Scholar
  5. 5.
    Olshausen, B.A.: Principles of Image Representation in Visual Cortex. In: Chalupa, L.M., Werner, J.S. (eds.) The Visual Neurosciences, pp. 1603–1615. MIT Press (2003)Google Scholar
  6. 6.
    Ringach, D.L.: Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. J. Neurophysiol. 88, 455–463 (2002)Google Scholar
  7. 7.
    Rehn, M., Sommer, F.T.: A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields. Journal of Computational Neuroscience 22, 135–146 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Vinje, W.E., Gallant, J.L.: Sparse Coding and Decorrelation in Primary Visual Cortex During Natural Vision. Science 287, 1273–1276 (2000)CrossRefGoogle Scholar
  9. 9.
    Perez-Orive, J., Mazor, O., Turner, G.C., Cassenaer, S., Wilson, R.I., Laurent, G.: Oscillations and Sparsening of Odor Representations in the Mushroom Body. Science 297, 359–365 (2002)CrossRefGoogle Scholar
  10. 10.
    Laurent, G.: Olfactory network dynamics and the coding of multidimensional signals. Nature Reviews Neuroscience 3, 884–895 (2002)CrossRefGoogle Scholar
  11. 11.
    Lewicki, M.S.: Efficient coding of natural sounds. Nature Neuroscience 5, 356–363 (2002)CrossRefGoogle Scholar
  12. 12.
    Smith, E.C., Lewicki, M.S.: Efficient auditory coding. Nature 439, 978–982 (2006)CrossRefGoogle Scholar
  13. 13.
    Perrinet, L.: Feature detection using spikes: the greedy approach. Journal of Physiology-Paris 98, 530–539 (2004)CrossRefGoogle Scholar
  14. 14.
    Perrinet, L.: Efficient Source Detection Using Integrate-and-Fire Neurons. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005, Part I. LNCS, vol. 3696, pp. 167–172. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Perrinet, L.U.: Role of homeostasis in learning sparse representations. Neural Computation 22, 1812–1836 (2010)zbMATHCrossRefGoogle Scholar
  16. 16.
    Mattlat, S.G., Zhang, Z.: Matching Pursuits with Time-Frequency Dictionaries. IEEE Transactions on Signal Processing 41, 3397–3415 (1993)CrossRefGoogle Scholar
  17. 17.
    Rozell, C.J., Johnson, D.H., Baraniuk, R.G., Olshausen, B.A.: Sparse Coding via Thresholding and Local Competition in Neural Circuits. Neural Computation 20, 2526–2563 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Spratling, M.W.: Predictive Coding as a Model of Response Properties in Cortical Area V1. The Journal of Neuroscience 30, 3531–3543 (2010)CrossRefGoogle Scholar
  19. 19.
    Spratling, M.W.: A single functional model accounts for the distinct properties of suppression in cortical area V1. Vision Research 51, 563–576 (2011)CrossRefGoogle Scholar
  20. 20.
    Hartline, H.K., Ratliff, F.: Inhibitory interaction of receptor units in the eye of Limulus. Journal of General Physiology 40, 357–376 (1957)CrossRefGoogle Scholar
  21. 21.
    Hartline, H.K., Ratliff, F.: Spatial summation of inhibitory influences in the eye of Limulus, and the mutual interaction of receptor units. Journal of General Physiology 41, 1049–1066 (1958)CrossRefGoogle Scholar
  22. 22.
    Anderson, J.S., Carandini, M., Ferster, D.: Orientation Tuning of Input Conductance, Excitation, and Inhibition in Cat Primary Visual Cortex. J. Neurophysiol. 84, 909–926 (2000)Google Scholar
  23. 23.
    Priebe, N.J., Ferster, D.: Mechanisms underlying cross-orientation suppression in cat visual cortex. Nat. Neurosci. 9, 552–561 (2006)CrossRefGoogle Scholar
  24. 24.
    Ozeki, H., Finn, I.M., Schaffer, E.S., Miller, K.D., Ferster, D.: Inhibitory Stabilization of the Cortical Network Underlies Visual Surround Suppression. Neuron 62, 578–592 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jiqian Liu
    • 1
  • Yunde Jia
    • 1
  1. 1.Beijing Key Lab of Intelligent Information Technology, School of Computer Science and TechnologyBeijing Institute of TechnologyBeijingP.R. China

Personalised recommendations