Skip to main content

Analysis of Birefringent Characteristics of Photonic Crystal Fibers Filled Magnetic Fluid

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7366))

Abstract

The birefringent properties of a new type of Total Internal Reflection Photonic Crystal Fiber(TIR-PCF) filled symmetrically with magnetic fluid in the holes are studies by using the full-vector finite element method.To improve numerical precision, the perfectly matched layer is used as an absorbing boundary condition in computing. Theoretical calculations show that it may exhibit high birefringence in a properly designed PCF (whose birefringence can be as high as 0.05), and the birefringence can be tuned by magnetic fields or the structure parameter of the PCF. The birefringence effect is ten times higher than the general fiber and there is a fairly good linearity. This scheme provides theoretical foundation to use magnetic field to control light in PCF and also offers a potential method for making high-birefringent polarization fiber.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Russell, P.S.J.: Photonic-crystal fibers. Science 299, 358–362 (2003)

    Article  Google Scholar 

  2. Knight, J.C.: Photonic crystal fibers. Nature 424, 847–851 (2003)

    Article  Google Scholar 

  3. Russell, P.S.J.: Photonic-crystal fibers. J. Lightwave Technol. 24, 4729–4749 (2006)

    Article  Google Scholar 

  4. Haakestad, M.W., Alkeskjold, T.T., Nielsen, M.D., Scolari, L., Riishede, J., Engan, H.E., Bjarklev, A.: Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber. IEEE Photon. Technol. Lett. 17(4), 819–821 (2005)

    Article  Google Scholar 

  5. Zografopoulos, D.C., Kriezis, E.E., Tsiboukis, T.D.: Tunable Highly Birefringent Bandgap-Guiding Liquid-Crystal Microstructured Fibers. J. Lightwave Technol. 24(9), 3427–3432 (2006)

    Article  Google Scholar 

  6. Alkeskjold, T.T., Laegsgaard, J., Bjarklev, A., Hermann, D.S., Broeng, J., Li, J., Gauza, S., Wu, S.T.: Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber. Appl. Opt. 45(10), 2261–2264 (2006)

    Article  Google Scholar 

  7. Monro, T., Richardson, D., Holey, J.: optical fibres:Fundamental properties and device applications. Comptes Rendus Physique 4(4), 175–186 (2003)

    Article  Google Scholar 

  8. Nielsen, M.D., Folkenberg, J.R., Mortensen, N.A., Bjarklev, A.: Bandwidth comparison of photonic crystal fibers and conventional single-mode fibers. Opt. Exp. 12(3), 430–435 (2004)

    Article  Google Scholar 

  9. Gates, J.C., Hillman, C.W., Baggett, J.C.: Structure and propagation of modes of large mode area holey fibers. Opt. Exp. 12(5), 847–852 (2004)

    Article  Google Scholar 

  10. Ortigosa-Blanch, A., Knight, J.C., Wadsworth, W.J., Arriaga, J., Mangan, B.J., Birks, A., Russell, P.S.J.: Highly birefringent photonic crystal fibers. Opt. Lett. 25, 1325–1327 (2000)

    Article  Google Scholar 

  11. Hansen, T.P., Broeng, J., Libori, S.E.B., Knudsen, E., Bjarklev, A., Jensen, J.R., Simonsen, H.: Highly birefringentindex-guiding photonic crystal fibers. IEEE Photon.Technol. Lett. 13, 588–590 (2001)

    Article  Google Scholar 

  12. Sapulak, M., Statkiewicz, G., Olszewski, J., Martynkien Urbanczyk, T.W., Wojcik, J., Makara, M., Klimek, J., Nasilowski, T., Berghmans, F., Thienpont, H.: Experimentaland theoretical investigations of birefringent holey fiberswith a triple defect. Appl. Opt. 44, 2652–2658 (2005)

    Article  Google Scholar 

  13. Frazão, O., Baptista, J.M., Santos, J.L., Roy, P.: Curvature sensor using a highly birefringent photonic crystal fiber with two asymmetric hole regions in a Sagnac interferometer. Appl. Opt. 47, 2520–2523 (2008)

    Article  Google Scholar 

  14. Kerbage, C., Eggleton, B.J.: Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber. Opt. Express 10(5), 246–255 (2002)

    Google Scholar 

  15. Zhao, Y., Zhang, Y.Y., Lv, R.Q., Wang, Q.: Novel optical devices based on the tunable refractive index of magnetic fluid and their characteristics. Journal of Magnetism and Magnetic Materials 323(23), 2987–2996 (2011)

    Article  Google Scholar 

  16. Yang, S.Y., Horng, H.E.: Structures, Optical Properties and Potentially Electro-Optical Applications of Magnetic Fluid Films. Tamkang Journal of Science and Engineering 5(2), 85–93 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, Y., Li, D. (2012). Analysis of Birefringent Characteristics of Photonic Crystal Fibers Filled Magnetic Fluid. In: Zhang, H., Hussain, A., Liu, D., Wang, Z. (eds) Advances in Brain Inspired Cognitive Systems. BICS 2012. Lecture Notes in Computer Science(), vol 7366. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31561-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31561-9_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31560-2

  • Online ISBN: 978-3-642-31561-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics