Lambek Calculus and Montague Grammar

  • Richard Moot
  • Christian Retoré
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6850)

Summary

This chapter discusses one of the important advantages of using (Lambek) categorial grammars: the straightforward correspondence between Lambek calculus proofs and derivations in Montague-style semantics, which extends straightforwardly to modern theories like DRT. In order to keep the exposition simple, we will only briefly discuss the intensional operators of Montague.

Keywords

Free Variable Semantic Type Intuitionistic Logic Discourse Representation Categorial Grammar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Abramsky(1993)]
    Abramsky, S.: Computational interpretations of linear logic. Theoretical Computer Science 111, 3–57 (1993)MathSciNetCrossRefMATHGoogle Scholar
  2. [Amblard et al(2010)Amblard, Lecomte, and Retoré]
    Amblard, M., Lecomte, A., Retoré, C.: Categorial minimalist grammars: From generative syntax to logical form. In: van Benthem, J., Moortgat, M. (eds.) Linguistic Analysis — Festschrift for Joachim Lambek. Linguistic Analysis, vol. 36, pp. 273–306 (2010)Google Scholar
  3. [van Benthem(1986)]
    van Benthem, J.: Categorial grammar. In: Essays in Logical Semantics, ch. 7, pp. 123–150. Reidel, Dordrecht (1986)CrossRefGoogle Scholar
  4. [van Benthem(1991)]
    van Benthem, J.: Language in Action: Categories, Lambdas and Dynamic Logic. Sudies in logic and the foundation of mathematics, vol. 130. North-Holland, Amsterdam (1991)MATHGoogle Scholar
  5. [van Benthem and ter Meulen(2011)]
    van Benthem, J., ter Meulen, A. (eds.): Handbook of Logic and Language, 2nd edn. North-Holland Elsevier, Amsterdam (2011)MATHGoogle Scholar
  6. [Carpenter(1996)]
    Carpenter, B.: Lectures on Type-Logical Semantics. MIT Press, Cambridge (1996)Google Scholar
  7. [van Dalen(1983)]
    van Dalen, D.: Logic and Structure, 4th edn., Universitext. Springer (1983)Google Scholar
  8. [Dowty et al(1981)Dowty, Wall, and Peters]
    Dowty, D., Wall, R.E., Peters, S.: Introduction to Montague Semantics. In: Classic Titles in Linguistics. Springer (1981)Google Scholar
  9. [van Eijck and Kamp(2011)]
    van Eijck, J., Kamp, H.: Representing discourse in context. In: Van Benthem and ter Meulen, ch. 3, pp. 181–252 (2011)Google Scholar
  10. [Gallin(1975)]
    Gallin, D.: Intensional and Higher-Order Logic: With Applications to Montague Semantics. Elsevier (1975)Google Scholar
  11. [Gamut(1991)]
    Gamut, L.T.F.: Logic, Language and Meaning, vol. 2. The University of Chicago Press (1991)Google Scholar
  12. [Girard et al(1988)Girard, Lafont, and Taylor]
    Girard, J.Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge Tracts in Theoretical Computer Science, vol. 7. Cambridge University Press (1988)Google Scholar
  13. [Heim and Kratzer(1997)]
    Heim, I., Kratzer, A.: Semantics in generative grammar. Blackwell textbooks in linguistics. Blackwell, Oxford (1997)Google Scholar
  14. [Hendriks(1993)]
    Hendriks, H.: Studied flexibility: Categories and types in syntax and semantics. PhD thesis, University of Amsterdam, ILLC Dissertation Series (1993)Google Scholar
  15. [Huet(1976)]
    Huet, G.: Résolution d’équations dans des langages d’ordre 1,2,...,ω. PhD thesis, Université Paris VII (1976)Google Scholar
  16. [Jackendoff(1995)]
    Jackendoff, R.: The Architecture of the Language Faculty. Linguistic Inquiry Monographs, vol. 28. MIT Press, Cambridge (1995)Google Scholar
  17. [Kamp and Reyle(1993)]
    Kamp, H., Reyle, U.: From Discourse to Logic. D. Reidel, Dordrecht (1993)MATHGoogle Scholar
  18. [Kamp et al(2011)Kamp, van Genabith, and Reyle]
    Kamp, H., van Genabith, J., Reyle, U.: Discourse representation theory. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 15, pp. 125–394. Springer (2011)Google Scholar
  19. [Keenan and Faltz(1985)]
    Keenan, E., Faltz, L.: Boolean Semantics for Natural Language, Synthese Language Library, vol. 23. D. Reidel (1985)Google Scholar
  20. [Krivine(1990)]
    Krivine, J.L.: Lambda Calcul — Types et Modèles. Etudes et Recherches en Informatique, Masson, Paris (1990)Google Scholar
  21. [Montague(1970a)]
    Montague, R.: English as a formal language. In: Visentini, B. (ed.) Linguaggi nella società e nella tecnica (1970a); reprinted as Chapter 6 of Thomason (1974)Google Scholar
  22. [Montague(1970b)]
    Montague, R.: Universal grammar. Theoria 36, 373–398 (1970b); reprinted as Chapter 7 of Thomason (1974)MathSciNetCrossRefMATHGoogle Scholar
  23. [Montague(1973)]
    Montague, R.: The proper treatment of quantification in ordinary English. In: Hintikka, J., Moravcsik, J., Suppes, P. (eds.) Approaches to Natural Language: Proceedings of the 1970 Stanford Workshop on Grammar and Semantics. Reidel, Dordrecht (1973); reprinted as Chapter 8 of Thomason (1974)Google Scholar
  24. [Moortgat(1997)]
    Moortgat, M.: Categorial type logics. In: van Benthem, J., ter Meulen, A. (eds.) Handbook of Logic and Language, ch. 2, pp. 93–177. North-Holland Elsevier, Amsterdam (1997)CrossRefGoogle Scholar
  25. [Morrill(1990)]
    Morrill, G.: Intensionality and boundedness. Linguistics and Philosophy 13(6), 699–726 (1990)CrossRefGoogle Scholar
  26. [Morrill(1994)]
    Morrill, G.: Type Logical Grammar. Kluwer Academic Publishers, Dordrecht (1994)CrossRefMATHGoogle Scholar
  27. [Morrill(2011)]
    Morrill, G.: Categorial Grammar: Logical Syntax, Semantics, and Processing. Oxford University Press (2011)Google Scholar
  28. [Muskens(1994)]
    Muskens, R.: Categorial Grammar and Discourse Representation Theory. In: Proceedings of COLING 1994, Kyoto, pp. 508–514 (1994)Google Scholar
  29. [Muskens(1996)]
    Muskens, R.: Combining Montague Semantics and Discourse Representation. Linguistics and Philosophy 19, 143–186 (1996)CrossRefGoogle Scholar
  30. [Muskens et al(2011)Muskens, van Benthem, and Visser]
    Muskens, R., van Benthem, J., Visser, A.: Dynamics. In: Van Benthem and ter Meulen, ch. 10, pp. 587–688 (2011)Google Scholar
  31. [Partee and Hendriks(2011)]
    Partee, B., Hendriks, H.: Montague Grammar. In: Van Benthem and ter Meulen, ch. 1, pp. 3–94 (2011)Google Scholar
  32. [Portner and Partee(2002)]
    Portner, P., Partee, B.H. (eds.): Formal Semantics: The Essential Readings. Blackwell Publishers (2002)Google Scholar
  33. [Pustejovsky(1995)]
    Pustejovsky, J.: The generative lexicon. MIT Press (1995)Google Scholar
  34. [Seldin and Hindley(1980)]
    Seldin, J.P., Hindley, J.R.: To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. Academic Press (1980)Google Scholar
  35. [Thomason(1974)]
    Thomason, R. (ed.): Formal Philosophy: Selected papers of Richard Montague. Yale University Press (1974)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Richard Moot
  • Christian Retoré

There are no affiliations available

Personalised recommendations