A Novel Genetic Algorithm Based Data Embedding Technique in Frequency Domain Using Z Transform (ANGAFDZT)

  • J. K. Mandal
  • A. Khamrui
  • S. Chakraborty
  • P. Sur
  • S. K. Datta
  • I. RoyChoudhury
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 177)


In this paper a transformed domain based gray scale image authentication/data hiding technique using Z transform (ZT) termed as ANGAFDZT, has been proposed. Z-Transform is applied on 2 x 2 mask of the source image to transform into corresponding frequency domain. Four bits of the hidden image are embedded in each mask of the source image. Resulting image masks are taken as initial population. New Generation, Crossover and Mutation are applied on the initial population to obtain stego image. Genetic algorithm is used to enhance the security level. During the process of embedding, dimension of the hidden image followed by the content of the message/hidden image are embedded. Reverse process is followed during decoding. High PSNR obtained for various images compared to existing Chin-Chen Chang et al.[1] conform the quality of invisible watermark of ANGAFDZT.


ANGAFDZT Z-Transform watermark Genetic algorithm PSNR MSE IF 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chang, C.-C., et al.: Reversible hiding in DCT- based compressed images. Science Direct Information Science 177, 2768–2786 (2007)CrossRefGoogle Scholar
  2. 2.
    Ghoshal, N., Mandal, J.K., et al.: Image Authentication by Hiding Large Volume of Data and Secure Message Transmission Technique using Mask (IAHLVDSMTTM). In: Proceedings of IEEE International Advanced Computing Conference, IACC 2009, Thapar University, Patiala, India, March 6-7 (2009) ISBN:978-981-08-2465-5Google Scholar
  3. 3.
    Ghoshal, N., Mandal, J.K., et al.: Masking based Data Hiding and Image Authentication Technique (MDHIAT). In: Proceedings of 16th International Conference of IEEE on Advanced Computing and Communications, ADCOM 2008, Anna University, December 14-17 (2008)Google Scholar
  4. 4.
    Ghoshal, N., Mandal, J.K.: A Novel Technique for Image Authentication in Frequency Domain using Discrete Fourier Transformation Technique (IAFDZTT). Malaysian Journal of Computer Science 21(1), 24–32 (2008) ISSN 0127-9094Google Scholar
  5. 5.
    Ghoshal, N., Mandal, J.K.: A Bit Level Image Authentication / Secrete Message Transmission Technique (BLIA/SMTT). Association for the Advancement of Modelling and Simulation Technique in Enterprises (AMSE), AMSE Journal of Signal Processing and Pattern Recognition 51(4), 1–13 (2008)Google Scholar
  6. 6.
    EL-Emam, N.N.: Hiding a large Amount of data with High Security Using Steganography Algorithm. Journal of Computer Science 3(4), 223–232 (2007) ISSN 1549-3636CrossRefGoogle Scholar
  7. 7.
    Rechberger, C., Rijman, V., Sklavos, N.: The NIST cryptographic Workshop on Hash Functions. In: IEEE Security and Privacy, Austria, vol. 4, pp. 54–56 (January-February 2006)Google Scholar
  8. 8.
    Pavan, S., Gangadharpalli, S., Sridhar, V.: Multivariate entropy detector based hybrid image registration algorithm. In: IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Philadelphia, Pennsylvania, USA, pp. 18–23 (March 2005)Google Scholar
  9. 9.
    Hashad, A.I., et al.: A Robust Steganography Technique using Discrete Cosine Transform Insertion. In: Enabling Technologies for the New Knowledge Society: ITI 3rd International Conference Information and Communication Technology (2005) ISBN:0-7803-9270-1Google Scholar
  10. 10.
    Moulin, P., O’Sullivan, J.A.: Information-theoretic analysis of information Hiding. IEEE Trans. on Info. Theory 49(3), 563–593 (2003)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Dumitrescu, S., Xiaolin, W., Wang, Z.: Detection of LSB steganography via sample pair analysis. IEEE Trans. on Signal processing 51(7), 1995–2007 (2003)CrossRefGoogle Scholar
  12. 12.
    Chandramouli, R., Memon, N.: Analysis of LSB based image steganography techniques. In: Proc. of ICIP, Thissaloniki, Greece, pp. 1019–1022 (2001)Google Scholar
  13. 13.
    Wang, R.-Z., Lib, C.F., Lin, J.C.: Image hiding by optimal LSB substitution and Genetic algorithm. Pattern Recognition Society (2001)Google Scholar
  14. 14.
    Lin, C.Y., Chang, S.F.: A robust image authentication method surviving JPEG lossy compression. In: Proc. SPIE, San Jose, pp. 296–307 (January 1998)Google Scholar
  15. 15.
    Weber, A.G.: The USC-SIPI Image Database: Version 5, Original release: Signal and Image Processing Institute, University of Southern California. Department of Electrical Engineering (October 1997), (last accessed on January 20, 2011)

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. K. Mandal
    • 1
  • A. Khamrui
    • 2
  • S. Chakraborty
    • 2
  • P. Sur
    • 2
  • S. K. Datta
    • 2
  • I. RoyChoudhury
    • 2
  1. 1.Dept. of Computer Science and EngineeringUniversity of KalyaniKalyani, NadiaIndia
  2. 2.Dept. of Computer Science and EngineeringFuture Institute of Engineering and ManagementKolkataIndia

Personalised recommendations