Advertisement

Multi-temporal Satellite Image Analysis Using Unsupervised Techniques

  • C. S. Arvind
  • Ashoka Vanjare
  • S. N. Omkar
  • J. Senthilnath
  • V. Mani
  • P. G. Diwakar
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 177)

Abstract

This paper presents flood assessment using non-parametric techniques for multi-temporal time series MODIS (Moderate Resolution Imaging Spectro radiometer) satellite images. The unsupervised methods like mean shift algorithm and median cut are used for automatic extraction of water pixel from the image. The extracted results presents a comparative study of unsupervised image segmentation methods. The performance evaluation indices like root mean square error and receiver operating characteristics are used to study algorithm performance. The result reported in this paper provides useful information for multi-temporal time series image analysis which can be used for current and future research.

Keywords

MODIS satellite images unsupervised image segmentation techniques performance evaluation indices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Walkey, J.A.: Development of a change detection tool for image analysis. MS thesis. University of Wisconsin-Madison (1997)Google Scholar
  2. 2.
    Bhavsar, P.D.: Review of remote sensing applications in hydrology and water resources management in India. Advances in Space Research 4(11), 193–200 (1984)CrossRefGoogle Scholar
  3. 3.
    Brakenridge, R., Anderson, E.: Modis-based flood detection, mapping and measurement: the potential for operational hydrological applications. NATO Science Series, 1, Volume 72, Transboundary Floods: Reducing Risks through Flood Management, 1, pp. 1-12Google Scholar
  4. 4.
    Veronique, P., Zhou, Z., Songde, M.A.: A Framework for flood assessment using satellite images. IEEE International Geoscience and Remote Sensing, IGARSS 2, 822–824 (1998)Google Scholar
  5. 5.
    Michael, S.A.: Multi-temporal Remote Sensing for mapping and monitoring Floods an approach involves validation of the KAFRIBA. Kafueu Flats. Zimba, Master Thesis (2007)Google Scholar
  6. 6.
    Nath, R.K., Deb, S.K.: Water-Body Area Extraction from High Resolution Satellite Images-An Introduction, Review, and Comparison. International Journal of Image Processing (IJIP) 3(6), 265–384 (2010)Google Scholar
  7. 7.
    Wang, Z., Zhang, D.: Progressive Switching Median Filter for the Removal of Impulse Noise from Highly Corrupted Images. IEEE Transactions on Circuits and Systems—ii: Analog and Digital Signal Processing 46(1) (January 1999)Google Scholar
  8. 8.
    Comaniciu, D., Meer, P.: Mean shift analysis and applications. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision (1999)Google Scholar
  9. 9.
    Heckbert, P.: Color image quantization for frame buffer display. In: Proceeding SIGGRAPH 1982 Proceedings of the 9th Annual Conference on Computer Graphics and Interactive Techniques. ACM SIGGRAPH Computer Graphics, vol. (16-3) (July 1982)Google Scholar
  10. 10.
    Fawcett, T.: An introduction to ROC analysis. Pattern Recognition Letters 27, 861–874 (2006)CrossRefGoogle Scholar
  11. 11.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  12. 12.
    Lillesand, T., Kiefer, R.W., Chipman, J.: Remote Sensing and Image InterpretationGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • C. S. Arvind
    • 1
  • Ashoka Vanjare
    • 2
  • S. N. Omkar
    • 3
  • J. Senthilnath
    • 2
  • V. Mani
    • 2
  • P. G. Diwakar
    • 3
  1. 1.Telibrahma Convergent Communication Pvt LimitedBangaloreIndia
  2. 2.Department of Aerospace EngineeringIndian Institute of ScienceBangaloreIndia
  3. 3.Earth Observation SystemIndian Space Research OrganisationBangaloreIndia

Personalised recommendations