Detection of Optic Disc by Line Filter Operator Approach in Retinal Images

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 177)

Abstract

The location of Optic Disc (OD) is of critical importance in retinal image analysis. This research paper carries out a new automated methodology to detect the optic disc (OD) in retinal images. OD detection helps the ophthalmologists to find whether the patient is affected by diabetic retinopathy or not. The proposed technique is to use line operator which gives higher percentage of detection than the already existing methods. The purpose of this project is to automatically detect the position of the OD in digital retinal fundus images. The method starts with converting the RGB image input into its LAB component. This image is smoothed using bilateral smoothing filter. Further, filtering is carried out using line operator. After which gray orientation and binary map orientation is carried out and then with the use of the resulting maximum image variation the area of the presence of the OD is found. The portions other than OD are blurred using 2D circular convolution. On applying mathematical steps like peak classification, concentric circles design and image difference calculation, OD is detected. The proposed method was evaluated using a subset of the STARE project’s dataset and the success percentage was found to be 96%.

Keywords

Automated detection Optic Disc Line Filter Operator Retinal Imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akita, K., Kuga, H.: A computer method of understanding ocular fundus images. Pattern Recognit. 15(6), 431–443 (1982)CrossRefGoogle Scholar
  2. Patton, N., Aslam, T.M., MacGillivary, T., Deary, I.J., Dhillon, B., Eikelboom, R.H., Yogesan, K., Constable, I.J.: Retinal image analysis:Concepts, applications and potential. Prog. Retin. Eye Res. 25(1), 99–127 (2006)CrossRefGoogle Scholar
  3. Walter, T., Klein, J.C., Massin, P., Erginay, A.: A Contribution of Image Processing to the Diagnosis of Diabetic Retinopathy-Detection of Exudates in Color Fundus Images of the Human Retina. IEEE Trans. Med. Imag. 21(10), 1236–1243 (2002)CrossRefGoogle Scholar
  4. Chrastek, Wolf, M., Donath, K., Niemann, H., Paulus, D., Hothorn, T., Lausen, B., Lammer, R., Mardin, C.Y., Michelson, G.: Automated segmentation of the optic nerve head for diagnosis of glaucoma. Med. Image Anal. 9(4), 297–314 (2005)CrossRefGoogle Scholar
  5. Fleming, A.D., Goatman, K.A., Philip, S., Olson, J.A., Sharp, P.F.: Automatic detection of retinal anatomy to assist diabetic retinopathy screening. Phys. Med. Biol. 52(2), 331–345 (2007)CrossRefGoogle Scholar
  6. Pinz, A., Bernogger, S., Datlinger, P., Kruger, A.: Mapping the Human Retina. IEEE Trans. Med. Imag. 17(4), 606–619 (1998)CrossRefGoogle Scholar
  7. Tobin, K.W., Chaum, E., Govindasamy, V.P., Karnowski, T.P.: Detection of anatomic structures in human retinal imagery. IEEE Trans. Med. Imag. 26(12), 1729–1739 (2007)CrossRefGoogle Scholar
  8. Niemeijer, M., Abramoff, M.D., Ginneken, B.V.: Segmentation of the optic disc, macula and vascular arch in fundus photographs. IEEE Trans. Med. Imag. 26(1), 116–127 (2007)CrossRefGoogle Scholar
  9. Hsu, W., Pallawala, P.M.D.S., Lee, M.L., Eong, K.A.: The Role of Domain Knowledge in the Detection of Retinal Hard Exudates. Proc. Int. Conf. Comp. Vis. Pattern Recognit. 2, 246–251 (2001)Google Scholar
  10. Sbeh, Z.B., Cohen, L.D., Mimoun, G., Coscas, G.: A new approach of geodesic reconstruction for drusen segmentation in eye fundus images. IEEE Trans. Med. Imag. 20(12), 1321–1333 (2002)CrossRefGoogle Scholar
  11. Walter, T., Klein, J.C.: Segmentation of color fundus images of the human retina: Detection of the optic disc and the vascular tree using morphological techniques. In: Proc. Int. Symp. Med. Data Anal., pp. 282–287 (2001)Google Scholar
  12. Li, H., Chutatape, O.: Automatic location of optic disc in retinal images. In: Proc. Int. Conf. Image, vol. 2, pp. 837–840 (2001)Google Scholar
  13. Sinthanayothina, C., Boycea, J.F., Cookb, H.L., Williamsonb, T.H.: Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br. J. Ophthalmol. 83, 902–910 (1999)CrossRefGoogle Scholar
  14. Sekhar, S., Al-Nuaimy, W., Nandi, A.K.: Automated localisation of retinal optic disk using Hough transform. In: Proc. Int. Symp. Biomed. Imag.: Nano Macro, pp. 1577–1580 (2008)Google Scholar
  15. Youssif, A., Ghalwash, A.Z., Ghoneim, A.: Optic disc detection from normalized digital fundus images by means of a vessels’ directionmatched filter. IEEE Trans. Med. Imag. 27(1), 11–18 (2008)CrossRefGoogle Scholar
  16. Hoover, A., Goldbaum, M.: Locating the optic nerve in a netinal image using the fuzzy convergence of the blood vessels. IEEE Trans. Med. Imag. 22(8), 951–958 (2003)CrossRefGoogle Scholar
  17. Foracchia, M., Grisan, E., Ruggeri, A.: Detection of optic disc in retinal images by means of a geometrical model of vessel structure. IEEE Trans. Med. Imag. 23(10), 1189–1195 (2004)CrossRefGoogle Scholar
  18. Haar, F.: Automatic localization of the optic disc in digital colour images of the human retina. M.S. thesis, Utrecht University, Utrecht, The Netherlands (2005)Google Scholar
  19. Li, H., Chutatape, O.: Automated feature extraction in color retinal images by a model based approach. IEEE Trans. Biomed. Eng. 51(2), 246–254 (2004)CrossRefGoogle Scholar
  20. Rovira, A.P., Trucco, E.: Robust optic disc location via combination of weak detectors. In: Proc. Int. Conf. IEEE Eng. Med. Bio. Soc, pp. 3542–3545 (2008)Google Scholar
  21. Zwiggelaar, R., Astley, S.M., Boggis, C.R.M., Taylor, C.J.: Linear structures in mammographic images: Detection and classification. IEEE Trans. Med. Imag. 23(9), 1077–1086 (2004)CrossRefGoogle Scholar
  22. Ricci, E., Perfetti, R.: Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans. Med. Imag. 26(10), 1357–1365 (2007)CrossRefGoogle Scholar
  23. Osareh, A., Mirmehdi, M., Thomas, B., Markham, R.: Comparison of colour spaces for optic disc localisation in retinal images. In: Proc. Int. Conf. Pattern Recognit., vol. 1, pp. 743–746 (2002)Google Scholar
  24. Tomasi, C., Manduchi, R.: Bilateral Filtering for Gray and Color Images. In: Proc. IEEE Int. Conf. Comp. Vis., pp. 839–846 (1998)Google Scholar
  25. Tasman, W., Jaeger, E.A.: Duane’s Ophthalmology, 15th edn. Lippincott Williams & Wilkins, Baltimore (2009)Google Scholar
  26. Kauppi, T., Kalesnykiene, V., Kamarainen, J.K., Lensu, L., Sorri, I., Uusitalo, H., Kälviäinen, H., Pietilä, J.: DIARETDB0: Evaluation database and methodology for diabetic retinopathy algorithms. Tech. Rep., Lappeenranta Univ. Technol., Lappeenranta, Finland (2006)Google Scholar
  27. Kauppi, T., Kalesnykiene, V., Kamarainen, J.K., Lensu, L., Sorri, I., Uusitalo, H., Klviinen, H., Pietil, J.: DIARETDB1 diabetic retinopathy database and evaluation protocol. Tech. Rep., Lappeenranta Univ. Technol., Lappeenranta, Finland (2007)Google Scholar
  28. Staal, J.J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., Ginneken, B.V.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imag. 23(4), 501–509 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Centre for ResearchAnna University of TechnologyChennaiIndia
  2. 2.St. Joseph’s College of EngineeringChennaiIndia

Personalised recommendations