Advertisement

An Efficient De-noising Technique for Fingerprint Image Using Wavelet Transformation

  • Ashish Kumar Dass
  • Rabindra Kumar Shial
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 177)

Abstract

Fingerprint acts as a vital role for user authentication as it is unique and not duplicated. For this reason fingerprint images are taken for different computer security purposes. Unfortunately reference fingerprints may get corrupted with noise during acquisition, transmission, or retrieval from storage media. Many image-processing algorithms such as pattern recognition need a clean fingerprint image to work effectively which in turn needs effective ways of de-noising such images. In this paper, we propose an adaptive method of image de-noising in the wavelet sub-band domain assuming the images to be contaminated with noise based on threshold estimation for each sub-band. Under this framework, the proposed technique estimates the threshold level by apply sub-band of each decomposition level. This paper entails the development of a new MATLAB function based on our algorithm. The experimental evaluation of our proposition reveals that our method removes noise more effectively than the in-built function provided by MATLAB.

Keywords

Wavelet Thresholding Gaussian Salt & Pepper noise Fingerprint Image De-noise Discrete Wavelet Transform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maltoni, D., Maio, D., Jain, A.K., Prabahar, S.: Handbook of Fingerprint Recognition. Springer (2009)Google Scholar
  2. 2.
    Coetzee, L., Botha, E.C.: Fingerprint Recognition in Low Quality Images. Pattern Recognition 26(10), 1441–1460 (1993)CrossRefGoogle Scholar
  3. 3.
    Zhao, Z.-B., Yuan, J.-S., Gao, Q., Kong, Y.-H.: Wavelet Image De-Noising Method Based On Noise Standard Deviation Estimation. In: Proceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recognition, Beijing, China, November 2-4 (2007)Google Scholar
  4. 4.
    Mallat, S.G., Hwang, W.L.: Singularity detection and processing with wavelets. IEEE Trans. Inform. Theory 38, 617–643 (1992)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Gornale, S.S., Humbe, V., Manza, R., Kale, K.V.: Fingerprint image de-noising using multi-resolution analysis (MRA) through stationary wavelet transform (SWT) method. International Journal of Knowledge Engineering 1(1), 5–14 (2010) ISSN: 0976–5816Google Scholar
  6. 6.
    Verma, R., Goel, A.: Wavelet Application in Fingerprint Recognition. International Journal of Soft Computing and Engineering (IJSCE) 1(4) (September 2011) ISSN: 2231-2307Google Scholar
  7. 7.
    Hrechak, A.K., McHugh, J.A.: Automatic Fingerprint Recognition using Structural Matching. Pattern Recognition 23, 893–904 (1990)CrossRefGoogle Scholar
  8. 8.
    Graps, A.: An Introduction to Wavelets. IEEE Computational Science and Engineering 2(2) (Summer 1995)Google Scholar
  9. 9.
    Berry, J., Stoney, D.A.: The history and development of finger printing in advances in fingerprint technology, 2nd edn., pp. 1–40. CRC Press (2001)Google Scholar
  10. 10.
    Yang, R., Yin, L., Gabbouj, M., Astola, J., Neuvo, Y.: Optimal weighted median filters under structural constraints. IEEE Trans. Signal Processing 43, 591–604 (1995)CrossRefGoogle Scholar
  11. 11.
    Ben Hamza, A., Luque, P., Martinez, J., Roman, R.: Removing noise and preserving de- tails with relaxed median filters. J. Math. Imag. Vision 11(2), 161–177 (1999)CrossRefGoogle Scholar
  12. 12.
    Jain, A.K.: Fundamentals of digital image processing. Prentice-Hall (1989)Google Scholar
  13. 13.
    Donoho, D.L., Johnstone, I.M.: Ideal spatial adaption via wavelet shrinkage. Biometrika 81, 425–455 (1994)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Donoho, D.L., Johnstone, I.M.: Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Association 90(432), 1200–1224 (2001)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Strela, V.: Denoising via block Wiener filtering in wavelet domain. In: 3rd European Congress of Mathematics, Barcelona. Birkhäuser (July 2000)Google Scholar
  16. 16.
    Zheng, J.-D., Gao, Y., Zhang, M.-Z.: Fingerprint Matching Algorithm Based on Similar Vector Triangle. In: Second International Congress on Image and Signal Processing, pp. 1–6 (2009)Google Scholar
  17. 17.
    Humbe, V., Gornale, S.S., Magar, G., Manza, R., Kale, K.V.: Fingerprint Image De-noising through Decimated and Un-decimated Wavelet Transforms (WT). In: International Conference on Future Computer and Communication, ICFCC 2009, pp. 500–504 (2009), doi:10.1109/ICFCC.2009.101Google Scholar
  18. 18.
    Technique on image denoising in wavelet transform domain CAI Hantian (South China University of Technology, Guangzhou 510641), doi: CNKI:SUN:GXJS.0.1998-06-002Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Dept. of CSENational Institute of Science & TechnologyBerhampurIndia
  2. 2.CSENational Institute of Science & TechnologyBerhampurIndia

Personalised recommendations