Frequent Queries Selection for View Materialization

  • T. V. Vijay Kumar
  • Gaurav Dubey
  • Archana Singh
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 177)


A data warehouse stores historical data for answering analytical queries. These analytical queries are long, complex and exploratory in nature and, when processed against a large data warehouse, consume a lot of time for processing. As a result the query response time is high. This time can be reduced by materializing views over a data warehouse. These views aim to improve the query response time. For this, they are required to contain relevant information for answering future queries. In this paper, an approach is presented that identifies such relevant information, obtained from previously posed queries on the data warehouse. The approach first identifies subject specific queries and then, from amongst such subject specific queries, frequent queries are selected. These selected frequent queries contain information that has been accessed frequently in the past and therefore has high likelihood of being accessed by future queries. This would result in an improvement in query response time and thereby result in efficient decision making.


Subject Area Data Warehouse Query Optimization Dice Coefficient Query Response Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, S., Chaudhari, S., Narasayya, V.: ‘Automated Selection of Materialized Views and Indexes in SQL databases’. In: 26th International Conference on Very Large Data Bases, VLDB 2000, Cairo, Egypt, pp. 495–505 (2000)Google Scholar
  2. 2.
    Aouiche, K., Darmont, J.: Data mining-based materialized view and index selection in data warehouse. Journal of Intelligent Information Systems, 65–93 (2009)Google Scholar
  3. 3.
    Baralis, E., Paraboschi, S., Teniente, E.: ‘Materialized View Selection in a Multidimansional Database’. In: 23rd International Conference on Very Large Data Bases, VLDB 1997, Athens, Greece, pp. 156–165 (1997)Google Scholar
  4. 4.
    Brin, S., Motwani, R., Ullman, J.D., Tsur, S.: Dynamic Itemset Counting and Implication Rules for Market Basket Data. In: SIGMOD Record, New York, vol. 6(2), pp. 255–264 (June 1997)Google Scholar
  5. 5.
    Chaudhuri, S., Shim, K.: Including Groupby in Query Optimization. In: Proceedings of the International Conference on Very Large Database Systems (1994)Google Scholar
  6. 6.
    Chirkova, R., Halevy, A.Y., Suciu, D.: A Formal Perspective on the View Selection Problem. In: Proceedings of VLDB, pp. 59–68 (2001)Google Scholar
  7. 7.
    Frakes, W.B., Baeza-Yates, R.: Information Retrieval, Data Structure and Algorithms. Prentice-Hall (1992)Google Scholar
  8. 8.
    Gupta, H., Mumick, I.S.: Selection of Views to Materialize in a Data warehouse. IEEE Transactions on Knowledge & Data Engineering 17(1), 24–43 (2005)CrossRefGoogle Scholar
  9. 9.
    Gupta, A., Harinarayan, V., Quass, D.: Generalized Projections: A Powerful Approach to Aggregation. In: Proceedings of the International Conference of Very Large Database Systems (1995)Google Scholar
  10. 10.
    Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing Data Cubes Efficiently. In: ACM SIGMOD, Montreal, Canada, pp. 205–216 (1996)Google Scholar
  11. 11.
    Horng, J.T., Chang, Y.J., Liu, B.J., Kao, C.Y.: Materialized View Selection Using Genetic Algorithms in a Data warehouse System. In: Proceedings of the 1999 Congress on Evolutionary Computation, Washington D.C., USA, vol. 3 (1999)Google Scholar
  12. 12.
    Inmon, W.H.: Building the Data Warehouse, 3rd edn. Wiley Dreamtech India Pvt. Ltd. (2003)Google Scholar
  13. 13.
    Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs (1988)zbMATHGoogle Scholar
  14. 14.
    Lawrence, M.: Multiobjective Genetic Algorithms for Materialized View Selection in OLAP Data Warehouses. In: GECCO 2006, Seattle Washington, USA, July 8-12 (2006)Google Scholar
  15. 15.
    Lehner, W., Ruf, T., Teschke, M.: Improving Query Response Time in Scientific Databases Using Data Aggregation. In: Thoma, H., Wagner, R.R. (eds.) DEXA 1996. LNCS, vol. 1134. Springer, Heidelberg (1996)Google Scholar
  16. 16.
    Mohania, M., Samtani, S., Roddick, J., Kambayashi, Y.: Advances and Research Directions in Data Warehousing Technology. Australian Journal of Information Systems (1998)Google Scholar
  17. 17.
    O’Neil, P., Graefe, G.: Multi-Table joins through Bitmapped Join Indices. SIGMOD Record 24(3), 8–11 (1995)CrossRefGoogle Scholar
  18. 18.
    Shah, B., Ramachandran, K., Raghavan, V.: A Hybrid Approach for Data Warehouse View Selection. International Journal of Data Warehousing and Mining 2(2), 1–37 (2006)zbMATHCrossRefGoogle Scholar
  19. 19.
    Teschke, M., Ulbrich, A.: Using Materialized Views to Speed Up Data Warehousing. Technical Report, IMMD 6, Universität Erlangen-Nümberg (1997)Google Scholar
  20. 20.
    Theodoratos, D., Sellis, T.: Data Warehouse Configuration. In: Proceeding of VLDB, Athens, Greece, pp. 126–135 (1997)Google Scholar
  21. 21.
    Theodoratos, D., Xu, W.: Constructing Search Spaces for Materialized View Selection’. In: 7th ACM Internatioanl Workshop on Data Warehousing and OLAP, DOLAP 2004, Washington, USA (2004)Google Scholar
  22. 22.
    Vijay Kumar, T.V., Ghoshal, A.: A Reduced Lattice Greedy Algorithm for Selecting Materialized Views. In: Prasad, S.K., Routray, S., Khurana, R., Sahni, S. (eds.) ICISTM 2009. CCIS, vol. 31, pp. 6–18. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Vijay Kumar, T.V., Haider, M., Kumar, S.: Proposing Candidate Views for Materialization. In: Prasad, S.K., Vin, H.M., Sahni, S., Jaiswal, M.P., Thipakorn, B. (eds.) ICISTM 2010. CCIS, vol. 54, pp. 89–98. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Vijay Kumar, T.V., Haider, M.: A Query Answering Greedy Algorithm for Selecting Materialized Views. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ICCCI 2010. LNCS (LNAI), vol. 6422, pp. 153–162. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Vijay Kumar, T.V., Jain, N.: Selection of Frequent Queries for Constructing Materialized Views in Data Warehouse. The IUP Journal of Systems Management 8(2), 46–64 (2010)Google Scholar
  26. 26.
    Vijay Kumar, T.V., Goel, A., Jain, N.: Mining Information for Constructing Materialised Views. International Journal of Information and Communication Technology 2(4), 386–405 (2010)CrossRefGoogle Scholar
  27. 27.
    Vijay Kumar, T.V., Haider, M.: Greedy Views Selection Using Size and Query Frequency. In: Unnikrishnan, S., Surve, S., Bhoir, D. (eds.) ICAC3 2011. CCIS, vol. 125, pp. 11–17. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  28. 28.
    Vijay Kumar, T.V., Haider, M., Kumar, S.: A View Recommendation Greedy Algorithm for Materialized Views Selection. In: Dua, S., Sahni, S., Goyal, D.P. (eds.) ICISTM 2011. CCIS, vol. 141, pp. 61–70. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  29. 29.
    Vijay Kumar, T.V., Devi, K.: Frequent Queries Identification for Constructing Materialized Views. In: The Proceedings of the International Conference on Electronics Computer Technology, ICECT 2011, Kanyakumari, Tamil Nadu, April 8-10, vol. 6, pp. 177–181. IEEE (2011)Google Scholar
  30. 30.
    Vijay Kumar, T.V., Haider, M.: Selection of Views for Materialization Using Size and Query Frequency. In: Das, V.V., Thomas, G., Lumban Gaol, F. (eds.) AIM 2011. CCIS, vol. 147, pp. 150–155. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  31. 31.
    Widom, J.: Research Problems in Data Warehousing. In: 4th International Conference on Information and Knowledge Management, Baltimore, Maryland, pp. 25–30 (1995)Google Scholar
  32. 32.
    Yang, J., Karlapalem, K., Li, Q.: Algorithms for Materialized View Design in Data Warehousing Environment. The Very Large databases (VLDB) Journal, 136–145 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • T. V. Vijay Kumar
    • 1
  • Gaurav Dubey
    • 3
  • Archana Singh
    • 2
  1. 1.School of Computer and Systems SciencesJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.Amity School of Computer SciencesNoidaIndia
  3. 3.Amity Institute of Information TechnologyNoidaIndia

Personalised recommendations