Effectiveness of Different Partition Based Clustering Algorithms for Estimation of Missing Values in Microarray Gene Expression Data

  • Shilpi Bose
  • Chandra Das
  • Abirlal Chakraborty
  • Samiran Chattopadhyay
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 177)

Abstract

Microarray experiments normally produce data sets with multiple missing expression values, due to various experimental problems. Unfortunately, many algorithms for gene expression analysis require a complete matrix of gene expression values as input. Therefore, effective missing value estimation methods are needed to minimize the effect of incomplete data during analysis of gene expression data using these algorithms. In this paper, missing values in different microarray data sets are estimated using different partition-based clustering algorithms to emphasize the fact that clustering based methods are also useful tool for prediction of missing values. However, clustering approaches have not been yet highlighted to predict missing values in gene expression data. The estimation accuracy of different clustering methods are compared with the widely used KNNimpute and SKNNimpute methods on various microarray data sets with different rate of missing entries. The experimental results show the effectiveness of clustering based methods compared to other existing methods in terms of Root Mean Square error.

Keywords

Microarray analysis missing value estimation c-means fuzzy c-means possibilistic c-means fuzzy possibilistic c-means 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schulze, A., Downward, J.: Navigating gene expression using microarrays - a technology review. Nat. Cell Biol. 3, E190–E195 (2001)CrossRefGoogle Scholar
  2. 2.
    Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick, J.C., Sabet, H., Tran, T., Yu, X., Powell, J.I., Yang, L., Marti, G.E., Moore, T., Hudson, J.J., Lu, L., Lewis, D.B., Tibshirani, R., Sherlock, G., Chan, W.C., Greiner, T.C., Weisenburger, D.D., Armitage, J.O., Warnke, R., Staudt, L.M.: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000)CrossRefGoogle Scholar
  3. 3.
    Raychaudhuri, S., Stuart, J.M., Altman, R.B.: Principal component analysis to summarize microarray experiments: application to sporulation time series. In: Pac. Symp. Biocomputing, pp. 455–466 (2000)Google Scholar
  4. 4.
    Alter, O., Brown, P.O., Bostein, D.: Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl Acad. Sci. USA 97, 10101–10106 (2000)CrossRefGoogle Scholar
  5. 5.
    Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Bostein, D., Altman, R.B.: Missing value estimation methods for DNA microarrays. Bioinformatics 17, 520–525 (2001)CrossRefGoogle Scholar
  6. 6.
    Kim, K.Y., Kim, B.J., Yi, G.S.: Reuse of imputed data in microarray analysis increases imputation efficiency. BMC Bioinformatics 5(160) (2004)Google Scholar
  7. 7.
    Oba, S., Sato, M.A., Takemasa, I., Monden, M., Matsubara, K.I., Ishii, S.: A bayseian missing value estimation method for gene exression profile data. Bioinformatics 19, 2088–2096 (2003)CrossRefGoogle Scholar
  8. 8.
    Wang, X., Li, A., Jiang, Z., Feng, H.: Missing value estimation for DNA microarray gene expression data by support vector regression imputation and orthogonal coding scheme. BMC Bioinformatics 7, 1–10 (2006)MATHCrossRefGoogle Scholar
  9. 9.
    Wong, D.S.V., Wong, F.K., Wood, G.R.: A multi-stage approach to clustering and imputation of gene expression profiles. Bioinformatics 23, 998–1005 (2007)CrossRefGoogle Scholar
  10. 10.
    Friedland, S., Niknejad, A., Chihara, L.: A simultaneous reconstruction of missing data in DNA microarrays. Linear Algebra Appl. 416, 8–28 (2006)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Kim, H., Golub, G.H., Park, H.: Missing value estimation for DNA microarray gene expression data: local least squares imputation. Bioinformatics 21, 187–198 (2005)CrossRefGoogle Scholar
  12. 12.
    Sehgal, M.S.B., et al.: Statistical neural networks and support vector machine for the classification of genetic mutations in ovarian cancer. In: IEEE CIBCB 2004, USA (2004)Google Scholar
  13. 13.
    Sehgal, M.S., et al.: K-ranked covarience based missing values estimation for microarray data classification. In: HIS (2004)Google Scholar
  14. 14.
    Au, W.-H., Chan, K.C.C., Wong, A.K.C., Wang, Y.: Attribute clustering for grouping, selection, and classification of gene expression data. IEEE Trans. on Computational Biology and Bioinformatics 2(2) (2005)Google Scholar
  15. 15.
    Tou, J.T., Gonzalez, R.C.: Pattern recognition principles. Addison-Wesley, London (1974)MATHGoogle Scholar
  16. 16.
    Bezdek, J.C.: Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York (1981)MATHCrossRefGoogle Scholar
  17. 17.
    Krishnapuram, R., Keller, J.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 4(3), 393–396 (1993)Google Scholar
  18. 18.
    Pal, N.R., Pal, K., Bezdek, J.C.: A mixed c-means clustering model. In: IEEE Int. Conf. Fuzzy Systems, Spain, pp. 11–21 (1997)Google Scholar
  19. 19.
    Eisen, M., Spellman, P., Brown, P., Bostein, D.: Cluster analysis and display of genome wide expression patterns. Proc. Natl Acad. Sci., USA 95, 14863–14868 (1998)CrossRefGoogle Scholar
  20. 20.
    Gasch, A., Spellman, P., Kao, C., Carmel-Harel, O., Eisen, M., Storz, G., Bostein, D., Brown, P.: Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell. 11, 4241–4257 (2000)Google Scholar
  21. 21.
    Iyer, V.R., Eisen, M.B., Ross, D.T., Schuler, G., Moore, T., Lee, J.C.F., Trent, J.M., Staudt, L.M., Hudson, J.J., Bogosk, M.S., et al.: The transcriptional program in the response of human fibroblast to serum. Science 283, 83–87 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shilpi Bose
    • 1
  • Chandra Das
    • 1
  • Abirlal Chakraborty
    • 2
  • Samiran Chattopadhyay
    • 2
  1. 1.Department of Computer Science and EngineeringNetaji Subhash Engineering CollegeKolkataIndia
  2. 2.Department of Information TechnologyJadavpur UniversityKolkataIndia

Personalised recommendations