Advertisement

Axial T2 Weighted MR Brain Image Retrieval Using Moment Features

  • Abraham Varghese
  • Reji Rajan Varghese
  • Kannan Balakrishnan
  • J. S. Paul
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 177)

Abstract

Magnetic resonance images play a vital role in identifying various brain related problems. Some of the diseases of the brain show abnormalities predominately at a particular anatomical location which on MR appears at a slice at defined level. This paper proposes a novel technique to locate desired slice using Rotational, Scaling and Translational (RST) invariant features derived from a ternary encoded local binary pattern (LBP)image. The LBP image is obtained by labeling each pixel with a code of the texture primitive based on the local neighborhood. The ternary encoding on LBP identifies the boundary of the uniform region and thus reduces the time for calculating moments of different order. The distance function based on the RST features extracted from LBP between query and database image is used to retrieve similar images corresponds to the query image.

Keywords

Feature Reduction Rotational Scaling and Translational (RST) invariant features Local Binary pattern Eccentricity Precision & Recall 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Müller, H., Michoux, N., Bandon, D., Geisbuhler, A.: A review content-based image retrieval systems in medical applications—Clinical benefits and future directions. Int. J. Med. Inf. 73(1), 1–23 (2004)CrossRefGoogle Scholar
  2. 2.
    Lehmann, T.M., Wein, B., Dahmen, J., Bredno, J., Vogelsang, F., Kohnen, M.: Content-based image retrieval in medical applications: A novel multi-step approach. In: Proceedings SPIE, vol. 3972, pp. 312–320 (2000)CrossRefGoogle Scholar
  3. 3.
    Smeulders, A.W.M., Worring, M., Santint, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)CrossRefGoogle Scholar
  4. 4.
    Korn, P., Sidiropoulos, N., Faloutsos, C., Siegel, E., Protopapas, Z.: Fast and effective retrieval of medical tumor shapes. IEEE Transactions on Knowledge an Data Engineering 10(6), 889–904 (1998)CrossRefGoogle Scholar
  5. 5.
    Liu, Y., Dellaert, F.: Classification-driven medical image retrieval. In: Proceedings of the ARPA Image Understanding Workshop (1997)Google Scholar
  6. 6.
    Li, S., Gong, T., Wang, J., Liu, R., Tan, C., Leong, T.Y.: 3D Content-based CT Image Retrieval System for Traumatic Brain Injury. In: Proceedings SPIE (2010)Google Scholar
  7. 7.
    Bucci, G., Cagnoni, S., Domenicis, R.D.: Integrating content-based retrieval in a medical image reference database. Comput. Med. Imag. Graph. 20(4), 231–241 (1996)CrossRefGoogle Scholar
  8. 8.
    Traina, A., Castañón, C., Traina Jr., C.: Multiwavemed: a system for medical image retrieval through wavelets transformations. In: Proc. 16th IEEE Symp. Comput., Based Med. Syst., NewYork, USA pp. 150–155 (2003)Google Scholar
  9. 9.
    Robinson, G.P., Tagare, H.D., Duncan, J.S., Jaffe, C.C.: Medical image collection indexing: shape- based retrieval using kd-trees. Comput. Med. Imag. Graph. 20(4), 209–217 (1996)CrossRefGoogle Scholar
  10. 10.
    Petrakis, G.M., Faloutsos, C.: Similarity searching in medical image databases. IEEE Trans. Knowl. Data Eng. 9(3), 435–447 (1997)CrossRefGoogle Scholar
  11. 11.
    Huang, H.K., Nielsen, J.F., Nelson, M.D., Lui, L.: Image-matching as a medical diagnostic support (DST) for brain diseases in children. Comput. Med. Imag. Graph. 29(2-3), 195–202 (2005)CrossRefGoogle Scholar
  12. 12.
    Felipe, J.C., Traina, A.J.M., Traina Jr., C.: Retrieval by content of medical images using texture for tissue identification. In: 16th IEEE Symp. Comput.-Based Med. Syst., New York, USA, pp. 175–180 (2003)Google Scholar
  13. 13.
    Müller, H., Rosset, A., Vallét, J.-P.: Comparing feature sets for content based image retrieval in a medical case database. In: Proc. SPIE Med. Imag., PACS Imag. Inf., San Diego, USA, pp. 99–109 (2004)Google Scholar
  14. 14.
    Unay, D., Ekin, A., Jasinsch, R.S.: Local Structure-Based Region-of-Interest Retrieval in brain MR Images. IEEE Transactions on Information Technology in Biomedicine 14(4) (July 2010)Google Scholar
  15. 15.
    Ojala, T., Pietikäinen, M., Harwood, D.: Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In: Proceedings of the 12th IAPR International Conference on Pattern Recognition, ICPR 1994, vol. 1, pp. 582–585 (1994)Google Scholar
  16. 16.
    Ojala, T., Pietikäinen, M., Harwood, D.: A Comparative study of texture measures with classification based on featured distribution. Pattern Recogn. 29(1), 51–59 (1996)CrossRefGoogle Scholar
  17. 17.
    Nanni, L., Lumini, A., Brahnam, S.: Local binary patterns variants as texture descriptors for Medical image analysis. Artificial Intelligence in Medicine (2010)Google Scholar
  18. 18.
    Hu, M.K.: Visual Pattern Recognition by Moment invariants. IRE Trans. Info. Theory IT-8, 179–187 (1962)Google Scholar
  19. 19.
    Schalkoff, R.: Digital Image Processing and Comuter vision (1989)Google Scholar
  20. 20.
    Lowe, D.: Distinctive image features from scale- invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  21. 21.
    Herbert, A., Tuytelaars, T., Van Gool, L.: Speeded-Up Robust Features (SURF). Elseiver (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Abraham Varghese
    • 1
  • Reji Rajan Varghese
    • 2
  • Kannan Balakrishnan
    • 3
  • J. S. Paul
    • 4
  1. 1.Computer Science and Engg.AsietKaladyIndia
  2. 2.Co-operative Medical CollegeCochinIndia
  3. 3.Cochin University of Science and TechnologyCochinIndia
  4. 4.Indian Institute of Information Technology and Management, TVMThiruvananthapuramIndia

Personalised recommendations