Advertisement

Application of Information Theory for Understanding of HLA Gene Regulation in Leukemia

  • Durjoy Majumder
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 177)

Abstract

The classical concept of information entropy can be useful in analyzing data pertaining to bioinformatics. In the present work, this has been utilized in understanding of the regulation of HLA gene expression by the inducible promoter region binding transcription factors (TFs). Human HLA surface expression data acquired through flow cytometry and corresponding different TFs expression data acquired through semi-quantitative PCR have been used in this work. The gene regulation phenomenon is considered as an information propagation channel with an amount of distortion. Information entropies computed for the source, receiver and computation of channel equivocation and mutual information are used to characterize the phenomenon of HLA gene regulation. The results obtained in the current exercise reveals that the state of leukemia alters the role of each TF, which tally with the current hypotheses about HLA gene regulation in different leukemias. Hence, this work shows the applicability of information theory in understanding of HLA gene regulation derived from human data.

Keywords

MHC expression Information entropy channel entropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wetzler, M., McElwain, B.K., Stewart, C.C., Blumenson, L., Mortazavi, A., Ford, L.A., Slack, J.L., Barcos, M., Ferrone, S., Baer, M.R.: HLA-DR antigen-negative acute myeloid leukemia. Leukemia 17, 707–715 (2003)CrossRefGoogle Scholar
  2. 2.
    Demanet, C., Mulder, A., Deneys, V., Worsham, M.J., Maes, P., Claas, F.H., Ferrone, S.: Down-regulation of HLA-A and HLA-Bw6, but not HLA-Bw4, allospecificities in leukemic cells: an escape mechanism from CTL and NK attack? Blood 103, 3122–3130 (2004)CrossRefGoogle Scholar
  3. 3.
    Majumder, D., Bandyopadhyay, D., Chandra, S., Mukhopadhayay, A., Mukherjee, N., Bandyopadhyay, S.K., Banerjee, S.: Analysis of HLA class Ia transcripts in human leukaemias. Immunogenet 57, 579–589 (2005)CrossRefGoogle Scholar
  4. 4.
    van den Elsen, P.J., Holling, T.M., Kuipers, H.F., van der Stoep, N.: Transcriptional regulation of antigen presentation. Curr. Opin. Immunol. 16, 67–75 (2004)CrossRefGoogle Scholar
  5. 5.
    Martin, B.K., Chin, K.C., Olsen, J.C., Skinner, C.A., Dey, A., Ozato, K., Ting, J.P.: Induction of MHC class I expression by the MHC class II transactivator CIITA. Immunity 6, 591–600 (1997)CrossRefGoogle Scholar
  6. 6.
    Gobin, S.J.P., Peijnenburg, A., Keijsers, V., van den Elsen, P.J.: Site alpha is crucial for two routes of IFN gamma-induced MHC class I transactivation: the ISRE-mediated route and a novel pathway involving CIITA. Immunity 6, 601–611 (1997)CrossRefGoogle Scholar
  7. 7.
    Kushida, M.M., Dey, A., Zhang, X.L., Campbell, J., Heeney, M., Carlyle, J., Ganguly, S., Ozato, K., Vasavada, H., Chamberlain, J.W.: A 150-base pair 5’ region of the MHC class I HLA-B7 gene is sufficient to direct tissue-specific expression and locus control region activity: the alpha site determines efficient expression and in vivo occupancy at multiple cis-active sites throughout this region. J. Immunol. 159, 4913–4929 (1997)Google Scholar
  8. 8.
    Muhlethaler-Mottet, A., Otten, L.A., Steimle, V., Mach, B.: Expression of MHC class II molecules in different cellular and functional compartments is controlled by differential usage of multiple promoters of the transactivator CIITA. EMBO J. 16, 2851–2860 (1997)CrossRefGoogle Scholar
  9. 9.
    Piskurich, J.F., Linhoff, M.W., Wang, Y., Ting, J.P.: Two distinct gamma interferon-inducible promoters of the major histocompatibility complex class II transactivator gene are differentially regulated by STAT1, interferon regulatory factor 1, and transforming growth factor beta. Mol. Cell Biol. 19, 431–440 (1999)Google Scholar
  10. 10.
    Girdlestone, J.: Transcriptional regulation of MHC class I genes. Eur. J. Immunogenet 23, 395–413 (1996)Google Scholar
  11. 11.
    Cabannes, E., Khan, G., Aollet, F., Jarrett, R.F., Hay, R.T.: Mutations in the IkBa gene in Hodgkin’s disease suggest a tumour suppressor role for IkappaBalpha. Oncogene 18, 3063–3070 (1999)CrossRefGoogle Scholar
  12. 12.
    Mori, N., Fujii, M., Ikeda, S., Yamada, Y., Tomonaga, M., Ballard, D.W., Yamamoto, N.: Constitutive activation of NF-kappaB in primary adult T-cell leukemia cells. Blood 93, 2360–2368 (1999)Google Scholar
  13. 13.
    Hochhaus, A., Yan, X.H., Willer, A., Hehlmann, R., Gordon, M.Y., Goldman, J.M., Melo, J.V.: Expression of interferon regulatory factor (IRF) genes and response to interferon-alpha in chronic myeloid leukaemia. Leukemia 11, 933–939 (1997)CrossRefGoogle Scholar
  14. 14.
    Schmidt, M., Nagel, S., Proba, J., Thiede, C., Ritter, M., Waring, J.F., Rosenbauer, F., Huhn, D., Wittig, B., Horak, I., Neubauer, A.: Lack of interferon consensus sequence binding protein (ICSBP) transcripts in human myeloid leukemias. Blood 91, 22–29 (1998)Google Scholar
  15. 15.
    Nekrep, N., Fontes, J.D., Geyer, M., Peterlin, B.M.: When the lymphocyte loses its clothes. Immunity 18, 453–457 (2003)CrossRefGoogle Scholar
  16. 16.
    Miller, K.B., Daoust, P.R.: Clinical manifestions of acute myeloid leukemias. In: Hoffman, R., Benz Jr., E.J., Shantil, S.J., Furie, B., Cohen, H.J., Silberstein, L.E., McGlave, P. (eds.) Hematology: Basic Principles and Practice, 3rd edn., Churchill Livingstone, New York, London, Philadelphia, pp. 999–1024 (2000)Google Scholar
  17. 17.
    Hoelzer, D.: Acute lymphocytic leukemia in adults. In: Hoffman, R., Benz Jr., E.J., Shantil, S.J., Furie, B., Cohen, H.J., Silberstein, L.E., McGlave, P. (eds.) Hematology: Basic Principles and Practice, 3rd edn., Churchill Livingstone, New York, London, Philadelphia, pp. 1089–1105 (2000)Google Scholar
  18. 18.
    van den Elsen, P.J., Holling, T.M., van der Stoep, N., Boss, J.M.: DNA methylation and expression of major histocompatibility complex class I and class II transactivator genes in human developmental tumor cells and in T cell malignancies. Clin. Immunol. 109, 46–52 (2003)CrossRefGoogle Scholar
  19. 19.
    Willers, J., Haffner, A., Zepter, K., Storz, M., Urosevic, M., Burg, G., Dummer, R.: The interferon inhibiting cytokine IK is overexpressed in cutaneous T cell lymphoma derived tumor cells that fail to upregulate major histocompatibility complex class II upon interferon-gamma stimulation. J. Invest. Dermatol. 116, 874–879 (2001)CrossRefGoogle Scholar
  20. 20.
    Girdlestone, J.: Regulation of HLA class I loci by CIITA. Blood 97, 1520 (2001)Google Scholar
  21. 21.
    Majumder, D.: Transcriptional regulation of immune recognition in hematological malignancies. Ph. D. Thesis, Jadavpur University, India (2006)Google Scholar
  22. 22.
    Margolin, A.M., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Favera, R.D., Califano, A.: ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinfor. 7(suppl. 1), S7 (2006), doi:10.1186/1471-2105-7-S1-S7CrossRefGoogle Scholar
  23. 23.
    Priness, I., Maimon, O., Ben-Gal, I.: Evaluation of gene-expression clustering via mutual information distance measure. BMC Bioinfor. 8, 111 (2007), doi:10.1186/1471-2105-8-111CrossRefGoogle Scholar
  24. 24.
    Wang, K., Saito, M., Bisikirska, B.C., Alvarez, M.J., Lim, W.K., Rajbhandari, P.R., Shen, Q., Nemenman, I., Basso, K., Margolin, A.A., Klein, U., Dalla-Favera, R., Califano, A.: Genome-wide identification of post-translational modulators of transcription factor activity in human B cells. Nature Biotech. 27(9), 830–837 (2009)CrossRefGoogle Scholar
  25. 25.
    Abramson, N.: Information theory and coding. McGraw-Hill, New York (1963)Google Scholar
  26. 26.
    Hamming, R.W.: Coding and Information theory. Prentice Hall Inc., Englewood Cliffs (1980)MATHGoogle Scholar
  27. 27.
    Cover, T.M., Thomas, J.A.: Elements of Information theory. John Wiley & Sons, Inc., New Delhi (1999)Google Scholar
  28. 28.
    Troyanskaya, O.G., Arbell, O., Koren, Y., Landau, G.M., Bolshoy, A.: Sequence complexity profiles of prokaryotic genomic sequences: a fast algorithm for calculating linguistic complexity. Bioinfor. 18, 679–688 (2002)CrossRefGoogle Scholar
  29. 29.
    Adami, C.: Sequence complexity in Darwinian evolution. Complexity 8, 49–56 (2002)CrossRefGoogle Scholar
  30. 30.
    Weston, A.D., Hood, L.: Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. J. Proteome Res. 3, 179–196 (2004)CrossRefGoogle Scholar
  31. 31.
    Bustin, S.A., Nolan, T.: Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J. Biomol. Techq. 15, 155–166 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of PhysiologyWest Bengal State UniversityKolkataIndia

Personalised recommendations