Iterative Image Fusion Using Fuzzy Logic with Applications

  • Srinivasa Rao Dammavalam
  • Seetha Maddala
  • M. H. M. Krishna Prasad
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 177)


Image fusion is the process of reducing uncertainty and minimizing redundancy while extracting all the useful information from the source images. Image fusion process is required for different applications like medical imaging, remote sensing, machine vision, biometrics and military applications. In this paper, an iterative fuzzy logic approach utilized to fuse images from different sensors, in order to enhance visualization. The proposed workfurther explores comparison between fuzzy based image fusion and iterative fuzzy fusion technique along with quality evaluation indices for image fusion like image quality index, mutual information measure, root mean square error, peak signal to noise ratio, entropy and correlation coefficient. Experimental results obtained from fusion process prove that the use of the proposed iterative fuzzy fusion can efficiently preserve the spectral information while improving the spatial resolution of the remote sensing images and medical imaging.


image fusion panchromatic multispectral fuzzy logic image quality index mutual information measure entropy correlation coefficient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yi, Z., Ping, Z.: Multisensor Image Fusion Using Fuzzy Logic for Surveillance Systems. In: IEEE Seventh International Conference on Fuzzy Systems and Discovery, Shanghai, pp. 588–592 (2010)Google Scholar
  2. 2.
    Yang, X.H., Huang, F.Z., Liu, G.: Urban Remote Image Fusion Using Fuzzy Rules. In: IEEE Proceedings of the Eighth International Conference on Machine Learning and Cybernetics, Baoding, pp. 101–109 (2009)Google Scholar
  3. 3.
    Mengyu, Z., Yuliang, Y.: A New image Fusion Algorithm Based on Fuzzy Logic. In: IEEE International Conference on Intelligent Computation Technology and Automation, Changsha, pp. 83–86 (2008)Google Scholar
  4. 4.
    Ranjan, R., Singh, H., Meitzler, T., Gerhart, G.R.: Iterative Image Fusion technique using Fuzzy and Neuro fuzzy Logic and Applications. In: IEEE Fuzzy Information Processing Society, Detroit, USA, pp. 706–710 (2005)Google Scholar
  5. 5.
    Zhao, L., Xu, B., Tang, W., Chen, Z.: A Pixel-Level Multisensor Image Fusion Algorithm Based on Fuzzy Logic. In: Wang, L., Jin, Y. (eds.) FSKD 2005, Part I. LNCS (LNAI), vol. 3613, pp. 717–720. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Wang, Y.P., Dang, J.W., Li, Q., Li, S.: Multimodal Medical Image fusion using Fuzzy Radial Basis function Neural Networks. In: IEEE International Conference on Wavelet Analysis and Pattern Recognition, Beijing, pp. 778–782 (2007)Google Scholar
  7. 7.
    Tanish, Z., Ishit, M., Mukesh, Z.: Novel hybrid Multispectral Image Fusion Method using Fuzzy Logic. I. J. Computer Information Systems and Industrial Management Applications, 096–103 (2010)Google Scholar
  8. 8.
    Bushra, N.K., Anwar, M.M., Haroon, I.: Pixel & Feature Level Multi-Resolution Image Fusion based on Fuzzy Logic. In: ACM Proc. of the 6th WSEAS International Conference on Wavelet analysis & Multirate Systems, Romania, pp. 88–91 (2006)Google Scholar
  9. 9.
    Zadeh, L.A.: Fuzzy Sets. J. Information and Control 8, 338–353 (1965)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Praveena, S.M.: Multiresolution Optimization of Image Fusion. In: National Conference on Recent Trends in Communication and Signal Processing, Coimbatore, pp. 111–118 (2009)Google Scholar
  11. 11.
    Maruthi, R., Sankarasubramanian, K.: Pixel Level Multifocus Image Fusion Based on Fuzzy Logic Approach. J. Information Technology 7(4), 168–171 (2008)Google Scholar
  12. 12.
    Dammavalam, S.R., Maddala, S., Krishna Prasad, M.H.M.: Quality Evaluation Measures of Pixel – Level Image Fusion Using Fuzzy Logic, pp. 485–493 (2011)Google Scholar
  13. 13.
    Thomas, M., David, B., Sohn, E.J., Kimberly, L., Darryl, B., Gulshecn, K., Harpreet, S., Samuel, E., Grmgory, S., Yelena, R., James, R.: Fuzzy Logic bascd Image Fusion Aerosense, Orlando (2002)Google Scholar
  14. 14.
    Mumtaz, A., Masjid, A.: Genetic Algorithms and its Applicatio to Image Fusion. In: IEEE International Conference on Emerging Technologies, Rawalpindi, pp. 6–10 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Srinivasa Rao Dammavalam
    • 1
  • Seetha Maddala
    • 2
  • M. H. M. Krishna Prasad
    • 3
  1. 1.Department of Information TechnologyVNRVJIETHyderabadIndia
  2. 2.Department of CSEGNITSHyderabadIndia
  3. 3.Department of CSEJNTU College of EngineeringVizianagaramIndia

Personalised recommendations