Advertisement

Analysis, Control and Synchronization of Hyperchaotic Zhou System via Adaptive Control

  • Sundarapandian Vaidyanathan
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 177)

Abstract

This paper investigates the analysis, control and synchronization of the hyperchaotic Zhou system (2009) via adaptive control. First, an adaptive control scheme is derived to stabilize the hyperchaotic Zhou system with unknown parameters to its unstable equilibrium at the origin. Then an adaptive synchronization scheme is derived to achieve global chaos synchronization of the identical hyperchaotic Zhou systems with unknown parameters. The results derived for adaptive stabilization and synchronization for the hyperchaotic system are established using the Lyapunov stability theory. Numerical simulations are shown to demonstrate the effectiveness of the adaptive control and synchronization schemes derived in this paper.

Keywords

Adaptive control hyperchaos synchronization hyperchaotic Zhou system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rössler, O.E.: An equation for hyperchaos. Phys. Lett. A 71, 155–157 (1979)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Ning, C.Z., Haken, H.: Detuned lasers and the complex Lorenz equations: Subcritical and supercritical Hopf bifurcations. Phys. Rev. A 41, 3826–3837 (1990)CrossRefGoogle Scholar
  3. 3.
    Kapitaniak, T., Chua, L.O.: Hyperchaotic attractor of unidirectionally coupled Chua’s circuit. Int. J. Bifurcat. Chaos 4, 477–482 (1994)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Ge, S.S., Wang, C., Lee, T.H.: Adaptive backstepping control of a class of chaotic systems. Internat. J. Bifur. Chaos 10, 1149–1156 (2000)MathSciNetMATHGoogle Scholar
  6. 6.
    Sun, M., Tian, L., Jiang, S., Xun, J.: Feedback control and adaptive control of the energy resource chaotic system. Chaos, Solitons & Fractals 32, 168–180 (2007)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Lu, L., Zhang, C., Guo, Z.A.: Synchronization between two different chaotic systems with nonlinear feedback control. Chinese Physics 16(6), 1603–1607 (2007)CrossRefGoogle Scholar
  9. 9.
    Sundarapandian, V.: Hybrid chaos synchronization of hyperchaotic Liu and hyperchaotic Chen systems by active nonlinear control. Internat. J. Computer Sci. Eng. Inform. Tech. 1(2), 1–14 (2011)CrossRefGoogle Scholar
  10. 10.
    Liao, T.L., Tsai, S.H.: Adaptive synchronization of chaotic systems and its applications to secure communications. Chaos, Solitons & Fractals 11, 1387–1396 (2000)MATHCrossRefGoogle Scholar
  11. 11.
    Sundarapandian, V.: Adaptive synchronization of hyperchaotic Lorenz and hyperchaotic Lü systems. Internat. J. Instrument. Control Sys. 1(1), 1–18 (2011)Google Scholar
  12. 12.
    Sundarapandian, V.: Adaptive stabilization and synchronization of Lü-like chaotic attractor. Internat. J. Comp. Sci. Eng. Informat. Tech. 1(4), 15–26 (2011)Google Scholar
  13. 13.
    Yang, T., Chua, L.O.: Control of chaos using sampled-data feedback control. Internat. J. Bifur. Chaos 9, 215–219 (1999)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Yu, Y.G., Zhang, S.C.: Adaptive backstepping synchronization of uncertain chaotic systems. Chaos, Solitons & Fractals 27, 1369–1375 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Konishi, K., Hirai, M., Kokame, H.: Sliding mode control for a class of chaotic systems. Phys. Lett. A 245, 511–517 (1998)CrossRefGoogle Scholar
  16. 16.
    Sundarapandian, V.: Global chaos synchronization of Pehlivan systems by sliding mode control. Internat. J. Comp. Sci. Eng. 3(5), 2163–2169 (2011)Google Scholar
  17. 17.
    Zhou, P., Cao, Y.X., Cheng, X.F.: A new hyperchaos system and its circuit simulation by EWB. Chinese Physics B 18(4), 1394–1398 (2009)CrossRefGoogle Scholar
  18. 18.
    Hahn, W.: The Stability of Motion. Springer, New York (1967)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.R & D CentreVel Tech Dr. RR & Dr. SR Technical UniversityChennaiIndia

Personalised recommendations