Advertisement

Brief Introduction to Computational Intelligence Paradigms for Fractional Calculus Researchers

  • Indranil Pan
  • Saptarshi Das
Part of the Studies in Computational Intelligence book series (SCI, volume 438)

Abstract

This chapter introduces the various paradigms in computational intelligence commonly used to solve a wide variety of challenging problems in systems engineering for which analytical solutions are usually difficult to obtain. The foundations of these concepts are briefly reviewed and their importance and short comings are highlighted. The discussion mainly focusses on Artificial Neural Networks, Fuzzy sets and systems, global optimization techniques based on evolutionary and swarm approaches and evolutionary programming. Popular applications of these paradigms in systems theory are outlined with appropriate references.

Keywords

Genetic Algorithm Fuzzy Logic Fuzzy Rule Fuzzy Controller Fuzzy Inference System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angeline, P.J., Saunders, G.M., Pollack, J.B.: An evolutionary algorithm that constructs recurrent neural networks. IEEE Transactions on Neural Networks 5, 54–65 (1994)CrossRefGoogle Scholar
  2. Azlan Hussain, M.: Review of the applications of neural networks in chemical process control-simulation and online implementation. Artificial Intelligence in Engineering 13, 55–68 (1999)CrossRefGoogle Scholar
  3. Bhandari, D., Murthy, C., Pal, S.K.: Genetic algorithm with elitist model and its convergence. International Journal of Pattern Recognition and Artificial Intelligence 10, 731–747 (1996)CrossRefGoogle Scholar
  4. Chen, G.: Conventional and fuzzy PID controllers: An overview. Intelligent Control & System 1, 235–246 (1996)CrossRefGoogle Scholar
  5. Chen, S., Billings, S., Grant, P.: Non-linear system identification using neural networks. International Journal of Control 51, 1191–1214 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  6. Chiu, S.: Using fuzzy logic in control applications: beyond fuzzy PID control. IEEE Control Systems Magazine 18, 100–104 (1998)CrossRefGoogle Scholar
  7. Choi, D.J., Park, H.: A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process. Water Research 35, 3959–3967 (2001)CrossRefGoogle Scholar
  8. Clarke, D.W., Mohtadi, C., Tuffs, P.: Generalized predictive control-Part I. The basic algorithm. Automatica 23, 137–148 (1987)zbMATHCrossRefGoogle Scholar
  9. Cutler, C.R., Ramaker, B.: Dynamic matrix control-a computer control algorithm. In: Proceedings of the Joint Automatic Control Conference, vol. 1 (1980)Google Scholar
  10. Dakev, N.V., Whidborne, J.F., Chipperfield, A.J., Fleming, P.: Evolutionary H infinity design of an electromagnetic suspension control system for a maglev vehicle. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 211, 345–355 (1997)CrossRefGoogle Scholar
  11. Feng, G.: A survey on analysis and design of model-based fuzzy control systems. IEEE Transactions on Fuzzy Systems 14, 676–697 (2006)CrossRefGoogle Scholar
  12. Fleming, P.J., Purshouse, R.C.: Purshouse RC (2002) Evolutionary algorithms in control systems engineering: a survey. Control Engineering Practice 10, 1223–1241 (2002)CrossRefGoogle Scholar
  13. Fonseca, C.M., Mendes, E., Fleming, P.J., Billings, S.: Non-linear model term selection with genetic algorithms. In: IEE/IEEE Workshop on Natural Algorithms in Signal Processing, vol. 2, p. 27 (1993)Google Scholar
  14. Frey, C.W., Kuntze, H.B.: A neuro-fuzzy supervisory control system for industrial batch processes. IEEE Transactions on Fuzzy Systems 9, 570–577 (2001)CrossRefGoogle Scholar
  15. Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning. Addison-wesley (1989)Google Scholar
  16. Goldberg, D.E., Segrest, P.: Finite Markov chain analysis of genetic algorithms. In: Proceedings of the Second International Conference on Genetic Algorithms on Genetic Algorithms and Their Application, pp. 1–8 (1987)Google Scholar
  17. Gray, G.J., Murray-Smith, D.J., Li, Y., et al.: Nonlinear model structure identification using genetic programming. Control Engineering Practice 6, 1341–1352 (1998)CrossRefGoogle Scholar
  18. Ha, Q., Nguyen, Q., Rye, D., Durrant-Whyte, H.: Fuzzy sliding-mode controllers with applications. IEEE Transactions on Industrial Electronics 48, 38–46 (2001)CrossRefGoogle Scholar
  19. rey Horn, J.: Finite Markov chain analysis of genetic algorithms with niching. Forrest 727, 110–117 (1993)Google Scholar
  20. Hunt, K.J., Sbarbaro, D., Zbikowski, R., Gawthrop, P.: Neural networks for control systems—a survey. Automatica 28, 1083–1112 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  21. Ichikawa, Y., Sawa, T.: Neural network application for direct feedback controllers. IEEE Transactions on Neural Networks 3, 224–231 (1992)CrossRefGoogle Scholar
  22. Kim, J., Moon, Y., Zeigler, B.P.: Designing fuzzy net controllers using genetic algorithms. IEEE Control Systems Magazine 15, 66–72 (1995)Google Scholar
  23. Konar, A.: Computational Intelligence: principles, techniques, and applications. Springer-Verlag New York Inc. (2005)Google Scholar
  24. Koza, J.R.: Genetic programming II: automatic discovery of reusable programs (1994)Google Scholar
  25. Koza, J.R.: Human-competitive results produced by genetic programming. Genetic Programming and Evolvable Machines 11, 251–284 (2010)CrossRefGoogle Scholar
  26. Koza, J.R., Keane, M.A., Streeter, M.J., et al.: Genetic programming IV: Routine human-competitive machine intelligence. Springer-Verlag New York Inc. (2005)Google Scholar
  27. Lazzerini, B., Reyneri, L.M., Chiaberge, M.: A neuro-fuzzy approach to hybrid intelligent control. IEEE Transactions on Industry Applications 35, 413–425 (1999)CrossRefGoogle Scholar
  28. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies 7, 1–13 (1975)zbMATHCrossRefGoogle Scholar
  29. Mayne, D.Q., Michalska, H.: Receding horizon control of nonlinear systems. IEEE Transactions on Automatic Control 35, 814–824 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  30. Mei, T., Goodall, R.: LQG and GA solutions for active steering of railway vehicles. IEE Proceedings-Control Theory and Applications 147, 111–117 (2000)CrossRefGoogle Scholar
  31. Narendra, K.S., Parthasarathy, K.: Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks 1, 4–27 (1990)CrossRefGoogle Scholar
  32. Oliveira, P., Sequeira, J., Sentieiro, J.: Selection of controller parameters using genetic algorithms. Engineering Systems with Intelligence, 431–438 (1992)Google Scholar
  33. Onnen, C., Babuska, R., Kaymak, U., et al.: Genetic algorithms for optimization in predictive control. Control Engineering Practice 5, 1363–1372 (1997)CrossRefGoogle Scholar
  34. Pao, Y.H., Phillips, S.M., Dejan, J.: Neural-net computing and the intelligent control of systems. International Journal of Control 56, 263–289 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  35. Patton, R., Chen, J., Liu, G.P.: Robust fault detection of dynamic systems via genetic algorithms. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 211, 357–364 (1997)CrossRefGoogle Scholar
  36. Rall, L.B.: Computational solution of nonlinear operator equations. Wiley, New York (1969)zbMATHGoogle Scholar
  37. Rodriguez-Vazquez, K., Fleming, P.: Multi-objective genetic programming for nonlinear system identification. Electronics Letters 34, 930–931 (1998)CrossRefGoogle Scholar
  38. Samanta, B., Al-Balushi, K., Al-Araimi, S.: Artificial neural networks and sup-port vector machines with genetic algorithm for bearing fault detection. Engineering Applications of Artificial Intelligence 16, 657–665 (2003)CrossRefGoogle Scholar
  39. Sugeno, M.: On stability of fuzzy systems expressed by fuzzy rules with singleton consequents. IEEE Transactions on Fuzzy Systems 7, 201–224 (1999)CrossRefGoogle Scholar
  40. Takagi, T., Sugeno, M.: Fuzzy identification of system and its applications to modelling and control. IEEE Trans. Syst., Man, and Cyber. 1, 5 (1985)Google Scholar
  41. Tzes, A., Peng, P.Y., Guthy, J.: Genetic-based fuzzy clustering for DC-motor friction identification and compensation. IEEE Transactions on Control Systems Technology 6, 462–472 (1998)CrossRefGoogle Scholar
  42. Vlachos, C., Williams, D., Gomm, J.: Genetic approach to decentralised PI controller tuning for multivariable processes. IEE Proceedings Control Theory and Applications 146, 58–64 (1999)CrossRefGoogle Scholar
  43. Wang, L.X.: Stable adaptive fuzzy control of nonlinear systems. IEEE Transactions on Fuzzy Systems 1, 146–155 (1993)CrossRefGoogle Scholar
  44. Widrow, B., Winter, R.: Neural nets for adaptive filtering and adaptive pattern recognition. Computer 21, 25–39 (1988)CrossRefGoogle Scholar
  45. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1, 67–82 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Power EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations