From Logical Forms to SPARQL Query with GETARUNS

  • Rocco Tripodi
  • Rodolfo Delmonte
Part of the Studies in Computational Intelligence book series (SCI, volume 439)


We present a system for Question Answering which computes a prospective answer from Logical Forms produced by a full-fledged NLP for text understanding, and then maps the result onto schemata in SPARQL to be used for accessing the Semantic Web. As an intermediate step, and whenever there are complex concepts to be mapped, the system looks for a corresponding amalgam in YAGO classes. It is just by the internal structure of the Logical Form that we are able to produce a suitable and meaningful context for concept disambiguation. Logical Forms are the final output of a complex system for text understanding - GETARUNS - which can deal with different levels of syntactic and semantic ambiguity in the generation of a final structure, by accessing computational lexical equipped with sub-categorization frames and appropriate selectional restrictions applied to the attachment of complements and adjuncts. The system also produces pronominal binding and instantiates the implicit arguments, if needed, in order to complete the required Predicate Argument structure which is licensed by the semantic component.


Link Data Question Answering SPARQL Query Gradable Adjective Coreference Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web, Scientific American (2001)Google Scholar
  2. 2.
    Berners-Lee, T.: Linked Data - Design Issues (2006),
  3. 3.
    Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: DBpedia – A Crystallization Point for the Web of Data. Journal of Web Semantics (2009)Google Scholar
  4. 4.
    Brewster, C., Ciravegna, F., Wilks, Y.: Background and foreground knowledge in dynamic ontology construction. In: Proceedings of the Semantic Web Workshop, SIGIR, Toronto, Canada (2003)Google Scholar
  5. 5.
    Buitelaar, P., Cimiano, P., Haase, P., Sintek, M.: Towards linguistically grounded ontologies. In: Procs. of European Semantic Web Conference (2009)Google Scholar
  6. 6.
    Chierchia, G.: Le strutture del linguaggio. Semantica (The structures of language. Semantics) il Mulino, Bologna (1997)Google Scholar
  7. 7.
    Cruse, D.A.: Microsenses, default specificity and the semantics-pragmatics boundary. Axiomathes 1, 1–20 (2002)MathSciNetGoogle Scholar
  8. 8.
    Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework and Graphical Development Environment for Robust NLP Tools and Applications. In: Proc. of the 40th Anniversary Meeting of the Association for Computational Linguistics (ACL 2002), Philadelphia (2002)Google Scholar
  9. 9.
    Damljanovic, D., Agatonovic, M., Cunningham, H.: Natural Language Interfaces to Ontologies: Combining Syntactic Analysis and Ontology-Based Lookup through the User Interaction. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS, vol. 6088, pp. 106–120. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., Halevy, A.: Learning to Match Ontologies on the Semantic Web. VLDB Journal 12(4), 303–319 (2003)CrossRefGoogle Scholar
  11. 11.
    Eco, U.: Dall’albero al labirinto. Studi storici sul segno e l’interpretazione (From the tree to the labyrinth), Bompiani (2007)Google Scholar
  12. 12.
    Freitas, A., Oliveira, J., Curry, E., O’Riain, S., Pereira da Silva, J.: Treo: Combining Entity-Search, Spreading Activation and Semantic Relatedness for Querying Linked Data. In: Proceedings of the 1st Workshop on Question Answering Over Linked Data (QALD-1) (May 30, 2011); Heraklion, Greece Co-located with the 8th Extended Semantic Web Conference Google Scholar
  13. 13.
    Fu, L., Wang, H., Yu, Y.: Towards Better Understanding and Utilizing Relations in DBpedia. International Journal of Web Intelligence and Agent SystemsGoogle Scholar
  14. 14.
    Klein, D., Manning, C.: Fast Exact Inference with a Factored Model for Natural Language Parsing. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Neural Information Processing Systems 2002. Advances in Neural Information Processing Systems, vol. 15, MIT Press (2003)Google Scholar
  15. 15.
    Liu, O.: Relation Discovery on the DBpedia Semantic Web. Framework (2009)Google Scholar
  16. 16.
    Lopez, V., Motta, E., Uren, V.S.: PowerAqua: Fishing the Semantic Web. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 393–410. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Sowa, J.F.: The role of logic and ontology in language and reasoning. In: Poli, R., Seibt, J. (eds.) Theory and Applications of Ontology: Philosophical Perspectives, ch. 11, pp. 231–263. Springer, Berlin (2010)CrossRefGoogle Scholar
  18. 18.
    Suchanek, F.M., Kasneci, G., Weikum, G.: Yago - A Core of Semantic Knowledge. In: 16th International World Wide Web Conference (2007)Google Scholar
  19. 19.
    Wilks, Y.: Information extraction as a core language technology. In: Pazienza, M.-T. (ed.) Information Extraction. Springer, Berlin (1997)Google Scholar
  20. 20.
    Wittgenstein, L.: Philosophical Investigations. Basil Blackwell, Oxford (1953)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Ca’ Bembo, Dorsoduro 1075 Università “Ca Foscari”VeniceItaly

Personalised recommendations