Abstract

In this chapter we define the notion of convergence of a sequence of Riemann surfaces, and we prove that any sequence of smooth stable Riemann surfaces has a subsequence which converges to a noded Riemann surface. This is a special case of the celebrated result by P. Deligne and D. Mumford concerning the compactification of the moduli space of algebraic curves. We follow an approach by W. Thurston which is more geometric in nature, viewing Riemann surfaces as surfaces equipped with a hyperbolic metric. The exposition has been made self-contained because the details are scattered throughout the existing literature. In particular, we explain all the necessary background material from hyperbolic geometry.

Keywords

Riemann Surface Marked Point Boundary Component Conformal Structure Hyperbolic Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 4.
    C. Abbas, H. Hofer, Holomorphic curves and global questions in contact geometry. Monograph available on the arXiv Google Scholar
  2. 5.
    W. Abikoff, The Real Analytic Theory of Teichmüller Space. Lecture Notes in Mathematics, vol. 820 (Springer, Berlin, 1980) MATHGoogle Scholar
  3. 6.
    L.V. Ahlfors, Conformal Invariants. Topics in Geometric Function Theory (McGraw-Hill, New York, 1973) MATHGoogle Scholar
  4. 7.
    L.V. Ahlfors, Complex Analysis (McGraw-Hill, New York, 1966) MATHGoogle Scholar
  5. 8.
    L.V. Ahlfors, L. Bers, Riemann’s mapping theorem for variable metrics. Ann. Math. 72(2) (1960) Google Scholar
  6. 9.
    A.F. Beardon, The Geometry of Discrete Groups. Graduate Texts in Mathematics, vol. 91 (Springer, Berlin, 1995) Google Scholar
  7. 10.
    L. Bers, Riemann Surfaces. Lecture Notes Courant Institute of Mathematical Sciences (1957) Google Scholar
  8. 11.
    L. Bers, An inequality for Riemann surfaces, in Differential Geometry and Complex Analysis, ed. by I. Chavel, H.M. Farkas (Springer, Berlin, 1985), pp. 87–93 CrossRefGoogle Scholar
  9. 12.
    F. Bourgeois, Y. Eliashberg, H. Hofer, K. Wysocki, E. Zehnder, Compactness results in symplectic field theory. Geom. Topol. 7, 799–888 (2003) CrossRefMATHMathSciNetGoogle Scholar
  10. 13.
    P. Buser, Geometry and Spectra of Compact Riemannian Surfaces. Progress in Mathematics, vol. 106 (Birkhäuser, Basel, 1992) Google Scholar
  11. 14.
    P. Buser, M. Seppälä, Symmetric pants decompositions of Riemann surfaces. Duke Math. J. 67(1), 39–55 (1992) CrossRefMATHMathSciNetGoogle Scholar
  12. 15.
    S.S. Chern, An elementary proof of isothermal parameters on a surface. Proc. Am. Math. Soc. 6, 771–782 (1955) CrossRefMATHMathSciNetGoogle Scholar
  13. 19.
    P. Deligne, D. Mumford, Irreducibility of the space of curves of given genus. Publ. Math. IHES 36, 75–109 (1969) CrossRefMATHMathSciNetGoogle Scholar
  14. 28.
    S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry (Springer, Berlin, 2004) CrossRefMATHGoogle Scholar
  15. 29.
    D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer, Berlin, 1983) CrossRefMATHGoogle Scholar
  16. 46.
    C. Hummel, Gromov’s Compactness Theorem for Pseudoholomorphic Curves. Progress in Mathematics, vol. 151 (Birkhäuser, Basel, 1997) CrossRefGoogle Scholar
  17. 47.
    A. Hurwitz, Über algebraische Gebilde mit Eindeutigen Transformationen in sich. Math. Ann. 32(2), 290–308 (1888) CrossRefMATHMathSciNetGoogle Scholar
  18. 48.
    J. Jost, Compact Riemann Surfaces (Springer, Berlin, 2006) CrossRefMATHGoogle Scholar
  19. 50.
    D. McDuff, D. Salamon, J-Holomorphic Curves and Symplectic Topology. AMS Colloquium Publications (2004) MATHGoogle Scholar
  20. 54.
    J. Milnor, Morse Theory (Princeton University Press, Princeton, 1969) Google Scholar
  21. 55.
    J. Munkres, Topology—A First Course, 2nd edn. (Prentice Hall, New York, 2000) Google Scholar
  22. 57.
    A. Newlander, L. Nirenberg, Complex analytic coordinates in almost complex manifolds. Ann. Math. 65(3), 391–404 (1957) CrossRefMATHMathSciNetGoogle Scholar
  23. 60.
    V. Poénaru, Rappels sur \(\pi_{0}(\operatorname{Diff}M^{2})\), L’Espace des courbes simples fermées sur une surface, in Travaux de Thurston sur les Surfaces, Séminaire Orsay. Astérisque (Société Mathématique de France, Paris, 1979), pp. 66–67 Google Scholar
  24. 62.
    D.A. Salamon, J.W. Robbin, A construction of the Deligne–Mumford orbifold. J. Eur. Math. Soc. 8, 611–699 (2006) CrossRefMATHMathSciNetGoogle Scholar
  25. 64.
    M. Seppälä, T. Sorvali, Geometry of Riemann Surfaces and Teichmüller Theory. North-Holland Mathematics Studies, vol. 169 (1992) Google Scholar
  26. 65.
    M. Spivak, A Comprehensive Introduction to Differential Geometry, vol. 4 (1999) MATHGoogle Scholar
  27. 66.
    E.M. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton University Press, Princeton, 1970) MATHGoogle Scholar
  28. 74.
    W.P. Thurston, Three Dimensional Geometry and Topology (Princeton University Press, Princeton, 1997) MATHGoogle Scholar
  29. 75.
    A. Tromba, Teichmüller Theory in Riemannian Geometry. Lectures in Mathematics, ETH Zürich (Birkhäuser, Basel, 1992) CrossRefMATHGoogle Scholar
  30. 76.
    S. Webster, A new proof of the Newlander–Nirenberg theorem. Math. Z. 201(3), 303–316 (1989) CrossRefMATHMathSciNetGoogle Scholar
  31. 78.
    C. Wendl, Finite energy foliations and surgery on transverse links. Ph.D. thesis, New York University (2005) Google Scholar
  32. 79.
    H. Whitney, Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math. Soc. 36(1), 63–89 (1934) CrossRefMathSciNetGoogle Scholar
  33. 80.
    S.A. Wolpert, On the Weil–Peterson geometry of the moduli space of curves. Am. J. Math. 107, 969–997 (1985) CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Casim Abbas
    • 1
  1. 1.Department of MathematicsMichigan State UniversityEast LansingUSA

Personalised recommendations