A Multiclassifier Approach for Drill Wear Prediction

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7376)


Classification methods have been widely used during last years in order to predict patterns and trends of interest in data. In present paper, a multiclassifier approach that combines the output of some of the most popular data mining algorithms is shown. The approach is based on voting criteria, by estimating the confidence distributions of each algorithm individually and combining them according to three different methods: confidence voting, weighted voting and majority voting. To illustrate its applicability in a real problem, the drill wear detection in machine-tool sector is addressed. In this study, the accuracy obtained by each isolated classifier is compared with the performance of the multiclassifier when characterizing the patterns of interest involved in the drilling process and predicting the drill wear. Experimental results show that, in general, false positives obtained by the classifiers can be slightly reduced by using the multiclassifier approach.


Classification multiclassifier drill wear prediction pattern identification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Emmanouilidis, C., et al.: Flexible software for condition monitoring, incorporating novelty detection and diagnostics. Computers in Industry 57, 516–527 (2006)CrossRefGoogle Scholar
  2. 2.
    Cassady, C.R., Schneider, K., Yu, P.: Impact of Maintenance Resource Limitations on Manufacturing System Productivity. In: Proceedings of the Industrial Engineering Research 2002 Conference (2002)Google Scholar
  3. 3.
    Muller, A., et al.: Formalisation of a new prognosis model for supporting proactive maintenance implementation on industrial system. Reliability Engineering & System Safety 93, 234–253 (2008)CrossRefGoogle Scholar
  4. 4.
    van Erp, M., Vuurpijl, L., Schomaker, L.: An overview and comparison of voting methods for pattern recognition. In: Proc. of the 8th IWFHR, pp. 195–200 (2002)Google Scholar
  5. 5.
    Ferreiro, S., Arana, R., Aizpurua, G., Aramendi, G., Arnaiz, A., Sierra, B.: Data Mining for Burr Detection (in the Drilling Process). In: Proceedings of the 10th International Work-Conference on Artificial Neural Network, Salamanca, Spain, June 10-12 (2009)Google Scholar
  6. 6.
    Jolliffe, I.T.: Principal Component Analysis. Springer Series in Statistics, 2nd edn., XXIX, 487 p. 28 illus. Springer, NY (2002) ISBN 978-0-387-95442-4Google Scholar
  7. 7.
    Carrascal, A., Díez, A., Azpeitia, A.: Unsupervised Methods for Anomalies Detection through Intelligent Monitoring Systems. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS, vol. 5572, pp. 137–144. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Kotsiantis, S.B.: Supervised Machine Learning. A Review of Classification Techniques, Informatics 31, 249–268 (2007)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G., Ng, A., Liu, B., Yu, P., Zhou, Z.-H., Steinbach, M., Hand, D., Steinberg, D.: Top 10 algorithms in data mining. Knowledge and Information Systems 14(1), 1–37 (2008)CrossRefGoogle Scholar
  10. 10.
    Rish, I.: An empirical study of the naive Bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence (2001)Google Scholar
  11. 11.
    Aha, D., Kibler, D.: Instance-based learning algorithms. Machine Learning 6, 37–66 (1991)Google Scholar
  12. 12.
    Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge University Press (2000)Google Scholar
  13. 13.
    Powell, M.J.D.: Radial basis functions for multivariable interpolation: a review. In: Mason, J.C., Cox, M.G. (eds.) Algortithms for Approximation on Functions and Data, pp. 143–167. Oxford University Press, Oxford (1987)Google Scholar
  14. 14.
    Quinlan: C4.5. Programs for Machine Learning. Morgan Kaufmann (1993)Google Scholar
  15. 15.
    Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)Google Scholar
  16. 16.
    Cohen, W.W.: Fast effective rule induction. In: Proceedings of the Twelfth Internacional Conference on Machine Learning (1995)Google Scholar
  17. 17.
    Fürnkranz, J., Widner, G.: Incremental Reduced Error Pruning. In: Proceedings of the Eleventh Internacional Conference on Machine Learning (1994)Google Scholar
  18. 18.
    Stone, M.: Cross-validatory choice and assessment of statistical predictions (with discussion). Journal of the Royal Statistical Society, Series B 36, 111–147 (1974)zbMATHGoogle Scholar
  19. 19.
    Kittler, J., Hated, M., Duin, R.P.W., Matas, J.: On Combining Classifiers. IEEE Transactions PAMI 20, 226–239 (1998)CrossRefGoogle Scholar
  20. 20.
    Verma, B., Gader, P., Chen, W.: Fusion of multiple handwritten word recognition techniques. Patt. Recog. Lett. 22, 991–998 (2001)zbMATHCrossRefGoogle Scholar
  21. 21.
    Dietterich, T.G.: Machine learning research: Four current directions. AI Magazine 18(4), 97–136 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Tecnalia Research & InnovationParque TecnológicoDonostia-San SebastiánEspaña

Personalised recommendations