Skip to main content

Enhancing Image Retrieval by an Exploration-Exploitation Approach

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 7376)

Abstract

In this paper, the Relevance Feedback procedure for Content Based Image Retrieval is considered as an Exploration-Exploitation approach. The proposed method exploits the information obtained from the relevance score as computed by a Nearest Neighbor approach in the exploitation step. The idea behind the Nearest Neighbor relevance feedback is to retrieve the immediate neighborhood of the area of the feature space where relevant images are found. The exploitation step aims at returning to the user the maximum number of relevant images in a local region of the feature space. On the other hand, the exploration step aims at driving the search towards different areas of the feature space in order to discover not only relevant images but also informative images. Similar ideas have been proposed with Support Vector Machines, where the choice of the informative images has been driven by the closeness to the decision boundary. Here, we propose a rather simple method to explore the representation space in order to present to the user a wider variety of images. Reported results show that the proposed technique allows to improve the performance in terms of average precision and that the improvements are higher if compared to techniques that use an SVM approach.

Keywords

  • Algorithms
  • Active Learning
  • max-min

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-31537-4_28
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-31537-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Information technology - Multimedia content description interface - Part 3: Visual, ISO/IEC Std. 15938-3:2003 (2003)

    Google Scholar 

  2. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: Identifying density-based local outliers. In: Chen, W., Naughton, J.F., Bernstein, P.A. (eds.) SIGMOD Conference, pp. 93–104. ACM (2000)

    Google Scholar 

  3. Cheng, J., Wang, K.: Active learning for image retrieval with co-svm. Pattern Recognition 40(1), 330–334 (2007)

    CrossRef  MATH  Google Scholar 

  4. Cohn, D.A., Atlas, L.E., Ladner, R.E.: Improving generalization with active learning. Machine Learning 15(2), 201–221 (1994)

    Google Scholar 

  5. Dasgupta, S., Hsu, D.: Hierarchical sampling for active learning. In: Cohen, W.W., McCallum, A., Roweis, S.T. (eds.) ICML. ACM International Conference Proceeding Series, vol. 307, pp. 208–215. ACM (2008)

    Google Scholar 

  6. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys 40(2), 1–60 (2008)

    CrossRef  Google Scholar 

  7. Deselaers, T., Keysers, D., Ney, H.: Features for image retrieval: an experimental comparison. Inf. Retr. 11(2), 77–107 (2008)

    CrossRef  Google Scholar 

  8. Dorkó, G.: Selection of Discriminative Regions and Local Descriptors for Generic Object Class Recognition. Ph.D. thesis, Institut National Polytechnique de Grenoble (2006)

    Google Scholar 

  9. Giacinto, G.: A nearest-neighbor approach to relevance feedback in content based image retrieval. In: CIVR 2007: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 456–463. ACM, New York (2007)

    Google Scholar 

  10. Giacinto, G.: Moving targets in computer security and multimedia retrieval. Trans. MLDM 4(1), 30–52 (2011)

    Google Scholar 

  11. Giacinto, G., Roli, F.: Bayesian relevance feedback for content-based image retrieval. Pattern Recognition 37(7), 1499–1508 (2004)

    CrossRef  MATH  Google Scholar 

  12. Giacinto, G., Roli, F.: Instance-based relevance feedback for image retrieval. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 17, pp. 489–496. MIT Press (2005)

    Google Scholar 

  13. Gosselin, P.H., Cord, M.: Active learning methods for interactive image retrieval. IEEE Transactions on Image Processing 17(7), 1200–1211 (2008)

    CrossRef  MathSciNet  Google Scholar 

  14. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. Tech. Rep. 7694, California Institute of Technology (2007), http://authors.library.caltech.edu/7694

  15. Hoi, S.C.H., Jin, R., Zhu, J., Lyu, M.R.: Semisupervised svm batch mode active learning with applications to image retrieval. ACM Trans. Inf. Syst. 27(3), 16:1–16:29 (2009)

    Google Scholar 

  16. Hoi, S.C.H., Lyu, M.R.: A semi-supervised active learning framework for image retrieval. In: CVPR (2), pp. 302–309. IEEE Computer Society (2005)

    Google Scholar 

  17. Huang, T., Dagli, C., Rajaram, S., Chang, E., Mandel, M., Poliner, G., Ellis, D.: Active learning for interactive multimedia retrieval. Proceedings of the IEEE 96(4), 648–667 (2008)

    CrossRef  Google Scholar 

  18. Jain, P., Kapoor, A.: Active learning for large multi-class problems. In: CVPR, pp. 762–769. IEEE (2009)

    Google Scholar 

  19. Jing, F., Li, M., Zhang, H., Zhang, B.: Entropy-based active learning with support vector machines for content-based image retrieval. In: ICME, pp. 85–88. IEEE (2004)

    Google Scholar 

  20. Katsavounidis, I., Jay Kuo, C.C., Zhang, Z.: A new initialization technique for generalized lloyd iteration. IEEE Signal Processing Letters 1(10), 144–146 (1994)

    CrossRef  Google Scholar 

  21. Lew, M.S., Sebe, N., Djeraba, C., Jain, R.: Content-based multimedia information retrieval: State of the art and challenges. ACM Trans. Multimedia Comput. Commun. Appl. 2(1), 1–19 (2006)

    CrossRef  Google Scholar 

  22. Lindenbaum, M., Markovitch, S., Rusakov, D.: Selective sampling for nearest neighbor classifiers. Machine Learning 54(2), 125–152 (2004)

    CrossRef  MATH  Google Scholar 

  23. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    CrossRef  Google Scholar 

  24. Lux, M., Chatzichristofis, S.A.: Lire: lucene image retrieval: an extensible java cbir library. In: MM 2008: Proceeding of the 16th ACM International Conference on Multimedia, pp. 1085–1088. ACM, New York (2008)

    CrossRef  Google Scholar 

  25. Pavlidis, T.: Limitations of content-based image retrieval (2008), http://theopavlidis.com/technology/CBIR/PaperB/vers3.htm

  26. Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: Labelme: A database and web-based tool for image annotation. International Journal of Computer Vision 77(1-3), 157–173 (2008)

    CrossRef  Google Scholar 

  27. Sivic, J., Zisserman, A.: Efficient visual search for objects in videos. Proceedings of the IEEE 96(4), 548–566 (2008)

    CrossRef  Google Scholar 

  28. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)

    CrossRef  Google Scholar 

  29. Tamura, H., Mori, S., Yamawaki, T.: Textural features corresponding to visual perception. IEEE Trans. Systems, Man and Cybernetics 8(6), 460–473 (1978)

    CrossRef  Google Scholar 

  30. Tax, D.M.: One-class classification. Ph.D. thesis, Delft University of Technology, Delft, The Netherlands (June 2001)

    Google Scholar 

  31. Tong, S., Chang, E.Y.: Support vector machine active learning for image retrieval. In: ACM Multimedia, pp. 107–118 (2001)

    Google Scholar 

  32. Wang, J.Z., Li, J., Wiederhold, G.: Simplicity: Semantics-sensitive integrated matching for picture libraries. IEEE Trans. Pattern Anal. Mach. Intell. 23(9), 947–963 (2001)

    CrossRef  Google Scholar 

  33. Wang, J., Hua, X.S.: Interactive image search by color map. ACM TIST 3(1), 12 (2011)

    MATH  Google Scholar 

  34. Wei, X.Y., Yang, Z.Q.: Coached active learning for interactive video search. In: Candan, K.S., Panchanathan, S., Prabhakaran, B., Sundaram, H., Chi Feng, W., Sebe, N. (eds.) ACM Multimedia, pp. 443–452. ACM (2011)

    Google Scholar 

  35. Winn, J.M., Criminisi, A., Minka, T.P.: Object categorization by learned universal visual dictionary. In: ICCV, pp. 1800–1807. IEEE Computer Society (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Piras, L., Giacinto, G., Paredes, R. (2012). Enhancing Image Retrieval by an Exploration-Exploitation Approach. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2012. Lecture Notes in Computer Science(), vol 7376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31537-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31537-4_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31536-7

  • Online ISBN: 978-3-642-31537-4

  • eBook Packages: Computer ScienceComputer Science (R0)