Bayesian Approach to the Concept Drift in the Pattern Recognition Problems

  • Pavel Turkov
  • Olga Krasotkina
  • Vadim Mottl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7376)

Abstract

We can face with the pattern recognition problems where the influence of hidden context leads to more or less radical changes in the target concept. This paper proposes the mathematical and algorithmic framework for the concept drift in the pattern recognition problems. The probabilistic basis described in this paper is based on the Bayesian approach to the estimation of decision rule parameters. The pattern recognition procedure derived from this approach uses the general principle of the dynamic programming and has linear computational complexity in contrast to polynomial computational complexity in general kind of pattern recognition procedure.

Keywords

Bayesian Approach Concept Drift Target Concept Pattern Recognition Problem Bellman Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Elwell, R., Polikar, R.: Incremental Learning of Concept Drift in Nonstationary Environments. IEEE Transactions on Neural Networks (2011)Google Scholar
  2. 2.
    Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Machine Learning 23, 69–101 (1996)Google Scholar
  3. 3.
    Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing. In: SIAM International Conference on Data Mining (2007)Google Scholar
  4. 4.
    Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: Getoor, L., Senator, T.E., Domingos, P., Faloutsos, C. (eds.) KDD, pp. 226–235. ACM Press (2003)Google Scholar
  5. 5.
    Street, W.N., Kim, Y.: A streaming ensemble algorithm (SEA) for large-scale classification. In: KDD, pp. 377–382. ACM Press (2001)Google Scholar
  6. 6.
    Bifet, A., Gama, J., Pechenizkiy, M., Zliobaite, I.: Handling Concept Drift: Importance, Challenges and Solutions. In: PAKDD-2011 Tutorial, Shenzhen, China, May 27 (2011)Google Scholar
  7. 7.
    Vapnik, V.: Statistical Learning Theory. John-Wiley & Sons, Inc. (1998)Google Scholar
  8. 8.
    Tatarchuk, A.I., Sulimova, V.V., Mottl, V.V., Windridge, D.: Method of relevant potential functions for selective combination of diverse information in the pattern recognition learning based on Bayesian approach. In: MMRO-14: Conf. Proc., Suzdal, pp. 188–191 (2009)Google Scholar
  9. 9.
    Wiener, N.: Extrapolation, Interpolation, and Smoothing of Stationary Random Time Series with Engineering Applications, 163p. Technology Press of MIT, John Wiley & Sons (1949)Google Scholar
  10. 10.
    Krasotkina, O.V., Mottl, V.V., Turkov, P.A.: Bayesian Approach to the Pattern Recognition Problem in Nonstationary Environment. In: Kuznetsov, S.O., Mandal, D.P., Kundu, M.K., Pal, S.K. (eds.) PReMI 2011. LNCS, vol. 6744, pp. 24–29. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    De Groot, M.: Optimal Statistical Decisions. McGraw-Hill Book Company (1970)Google Scholar
  12. 12.
    Kostin, A.A., Kopylov, A.V., Mottl, V.V., Muchnik, I.B.: Dynamic Programming Procedures in Nonstationary Signal Analysis. Pattern Recognition and Image Analysis 11(1), 205–208 (2001)Google Scholar
  13. 13.
  14. 14.
    Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: Massive Online Analysis. Journal of Machine Learning Research, JMLR (2010), http://sourceforge.net/projects/moa-datastream/
  15. 15.
    Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., Gavalda, R.: New ensemble methods for evolving data streams. In: 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2009)Google Scholar
  16. 16.
    Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: SBIA Brazilian Symposium on Artificial Intelligence, pp. 286–295 (2004)Google Scholar
  17. 17.
    Bifet, A., Frank, E., Holmes, G., Pfahringer, B.: Accurate Ensembles for Data Streams: Combining Restricted Hoeffding Trees using Stacking. Journal of Machine Learning Research Proceedings Track 13, 225–240 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pavel Turkov
    • 1
  • Olga Krasotkina
    • 1
  • Vadim Mottl
    • 2
  1. 1.Tula State UniversityTulaRussia
  2. 2.Computing Center of the Russian Academy of ScienceMoscowRussia

Personalised recommendations