A Route Planner Interpretation Service for Hard of Hearing People

  • Mehrez Boulares
  • Mohamed Jemni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7383)


The advancement of technology over the past fifteen years has opened many new doors to make our daily life easier. Nowadays, smart phones provide many services such as everywhere access to the social networks, video communication through 3G networks and the GPS (global positioning system) service. For instance, using GPS technology and Google maps services; user can find a route planner for traveling by foot, car, bike or public transport. Google map is based on KML which contains textual information to describe streets or places name and this is not accessible to persons with special needs like hard of hearing people. However, hearing impairment persons have very specific needs related to the learning and understanding process of any written language. Consequently, this service is not accessible to them. In this paper we propose a new approach that makes accessible KML information on android mobile devices. We rely on cloud computing and virtual agent technology subtitled with SignWriting to interpret automatically textual information on the map according to the user current position.


Android SignWriting Cloud Computing Virtual Agent Google map GPS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert, L.H.: Web 2.0 and Virtual World Technologies: A Growing Impact on IS Education. Journal of Information Systems Education 20(2), 137–144 (2009)Google Scholar
  2. 2.
    Annelies, B., Jean-Paul, S., Jean-Claude, M., Cyril, V.: Diva, une architecture pour le support des agents gestuels interactifs sur internet. Technique et Science Informatiques 29(7), 777–806 (2010)CrossRefGoogle Scholar
  3. 3.
    Bouchard, D.: Sign Languages & Language Universals: The Status of Order & Position in Grammar. Sign Language Studies 91, 101–160 (1996)Google Scholar
  4. 4.
    Dreuw, P., Stein, D., Deselaers, T., Rybach, D., Zahedi, M., Bungeroth, J., Ney, H.: Spoken Language Processing Techniques for Sign Language Recognition and Translation. Technology and Disability 20(2), 121–133 (2008)Google Scholar
  5. 5.
    Efthimiou, E., Fotinea, S., Hanke, T., Glauert, J., Bowden, R., Braffort, A., Collet, C., Maragos, P., Goudenove, F.: DICTA-SIGN: Sign Language Recognition. In: The Representation and Processing of Sign Languages: Corpora and Sign Language Technologies (CSLT 2010), Valletta, Malta, pp. 172–178 (May 2010)Google Scholar
  6. 6.
    Jemni, M., Elghoul, O.: A System to Make Signs Using Collaborative Approach. In: Miesenberger, K., Klaus, J., Zagler, W.L., Karshmer, A.I. (eds.) ICCHP 2008. LNCS, vol. 5105, pp. 670–677. Springer, Heidelberg (2008), doi:10.1007/978-3-540-70540-6_96CrossRefGoogle Scholar
  7. 7.
    Mata, F., Jaramillo, A., Claramunt, C.: A mobile navigation and orientation system for blind users in a metrobus environment. In: Tanaka, K., Fröhlich, P., Kim, K.-S. (eds.) W2GIS 2011. LNCS, vol. 6574, pp. 94–108. Springer, Heidelberg (2010), doi:10.1007/978-3-642-19173-2_9Google Scholar
  8. 8.
    Marschark, M., Harris, M.: Success and failure in learning to read: The special case of deaf children. Journal: Reading Comprehension Difficulties: Processes and Intervention, 279–300 (1996)Google Scholar
  9. 9.
    Official SignWriting web site,
  10. 10.
    Official Sign Smith web site,
  11. 11.
    Wheatley, M., Pabsch, A.: Sign Language in Europe. In: 4th Workshop on the Representation and Processing of Sign Languages: Corpora and Sign Language Technologies, LREC, Malta, pp. 251–255 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mehrez Boulares
    • 1
  • Mohamed Jemni
    • 1
  1. 1.Research Laboratory of Technologies of Information and Communication & Electrical Engineering (LaTICE)Ecole Supérieure des Sciences et Techniques de TunisTunisTunisia

Personalised recommendations