Combination of Map-Supported Particle Filters with Activity Recognition for Blind Navigation

  • Bernhard Schmitz
  • Attila Györkös
  • Thomas Ertl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7383)


By implementing a combination of an activity recognition with a map-supported particle filter we were able to significantly improve the positioning of our navigation system for blind people. The activity recognition recognizes walking forward or backward, or ascending or descending stairs. This knowledge is combined with knowledge from the maps, i.e. the location of stairs. Different implementations of the particle filter were evaluated regarding their ability to compensate for sensor drift.


Pedestrian Navigation Indoor Navigation Activity Recognition Particle Filter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bao, L., Intille, S.S.: Activity Recognition from User-Annotated Acceleration Data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Beauregard, S., Widyawan, Klepal, M.: Indoor pdr performance enhancement using minimal map information and particle filters. In: 2008 IEEE/ION Position, Location and Navigation Symposium, pp. 141–147 (May 2008)Google Scholar
  3. 3.
    Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth and Brooks, Monterey (1984)zbMATHGoogle Scholar
  4. 4.
    Fox, D., Burgard, W., Dellaert, F., Thrun, S.: Monte carlo localization: Efficient position estimation for mobile robots. In: Proceedings of the National Conference on Artificial Intelligence, pp. 343–349 (1999)Google Scholar
  5. 5.
    Hub, A., Schmitz, B.: Addition of RFID-based initialization and object recognition to the navigation system TANIA. In: Proceedings of the California State University, Northridge Center on Disabilities 24th Annual International Technology and Persons with Disabilities Conference (CSUN 2009), Los Angeles, CA, USA (2009)Google Scholar
  6. 6.
    Karantonis, D., Narayanan, M., Mathie, M., Lovell, N., Celler, B.: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Transactions on Information Technology in Biomedicine 10(1), 156–167 (2006)CrossRefGoogle Scholar
  7. 7.
    Krach, B., Robertson, P.: Cascaded estimation architecture for integration of foot-mounted inertial sensors. In: 2008 IEEE/ION Position, Location and Navigation Symposium, pp. 112–119 (May 2008)Google Scholar
  8. 8.
    Najafi, B., Aminian, K., Paraschiv-Ionescu, A., Loew, F., Bula, C., Robert, P.: Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly. IEEE Transactions on Biomedical Engineering 50(6), 711–723 (2003)CrossRefGoogle Scholar
  9. 9.
    Schmitz, B., Becker, S., Blessing, A., Großmann, M.: Acquisition and presentation of diverse spatial context data for blind navigation. In: 2011 12th International Conference on Mobile Data Management (MDM), pp. 276–284 (2011)Google Scholar
  10. 10.
    Slyper, R., Hodgins, J.K.: Action capture with accelerometers. In: Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2008, pp. 193–199. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2008)Google Scholar
  11. 11.
    Woodman, O., Harle, R.: Pedestrian localisation for indoor environments. In: UbiComp 2008: Proceedings of the 10th International Conference on Ubiquitous Computing, pp. 114–123. ACM, New York (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bernhard Schmitz
    • 1
  • Attila Györkös
    • 1
  • Thomas Ertl
    • 1
  1. 1.Institute for Visualization and Interactive SystemsUniversität StuttgartGermany

Personalised recommendations