Jumping Robot with a Tunable Suspension Based on Artificial Muscles

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7375)


This paper describes the design and control of a suspension based on electroactive polymers for controlling the landing dynamics of a jumping robot. Tunable suspension elements can electrically change their stiffness up to a factor of 10 in less than 0.01 seconds. We discuss design parameters and performance relevant to bio-inspired systems and demonstrate the ability to operate in positive (actuator), neutral (spring-like), or negative (damping or braking) workloops. When applied to a single-legged robot, positive workloops allow sustained periodic hopping while negative workloops can be used to rapidly achieve equilibrium during a landing event, acting in a similar manner to muscle in jumping animals. Extended bio-inspired applications are discussed.


bio-inspired robotics variable stiffness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McMahon, T.A.: The role of compliance in mammalian running gaits. Journal of Experimental Biology 115, 263–282 (1985)Google Scholar
  2. 2.
    Brown, I., Loeb, G.: A reductionist approach to creating and using neuromusculoskeletal models. Biomechanics and Neural Control of Posture and Movement (2000)Google Scholar
  3. 3.
    Blickhan, R., Seyfarth, A., Geyer, H., Grimmer, S., Wagner, H., Gnther, M.: Intelligence by mechanics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365(2007), 199–220 (1850)Google Scholar
  4. 4.
    Full, R.J., Koditschek, D.E.: Templates and anchors: neuromechanical hypotheses of legged locomotion on land. Journal of Experimental Biology 202(23), 3325–3332 (1999)Google Scholar
  5. 5.
    Kim, S., Clark, J.E., Cutkosky, M.R.: iSprawl: Design and tuning for high-speed autonomous open-loop running. The International Journal of Robotics Research 25(9), 903–912 (2006)CrossRefGoogle Scholar
  6. 6.
    Dyhre-Poulsen, P., Simonsen, E., Voigt, M.: Dynamic control of muscle stiffness and h reflex modulation during hopping and jumping in man. Journal of Physiology, 287–304 (1991)Google Scholar
  7. 7.
    Farley, C.T., Houdijk, H.H.P., Van Strien, C., Louie, M.: Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses. Journal of Applied Physiology 85(3), 1044–1055 (1998)Google Scholar
  8. 8.
    Lussier Desbiens, A., Asbeck, A., Cutkosky, M.R.: Landing, perching and taking off from vertical surfaces. The International Journal of Robotics Research 30(3), 355–370 (2011)CrossRefGoogle Scholar
  9. 9.
    Bizzi, E., Accornero, N., Chapple, W., Hogan, N.: Posture control and trajectory formation during arm movement. Journal of Neuroscience 4, 2738–2744 (1984)Google Scholar
  10. 10.
    Van Ham, R., Sugar, T., Vanderborght, B., Hollander, K., Lefeber, D.: Compliant actuator designs. IEEE Robotics and Automation Magazine, 81–94 (September 2009)Google Scholar
  11. 11.
    Raibert, M.H., Brown, H.B., Chepponis, M.: Experiments in balance with a 3D one-legged hopping machine. The International Journal of Robotics Research 3(2), 75–92 (1984)CrossRefGoogle Scholar
  12. 12.
    Vanderborght, B., Verrelst, B., Van Ham, R., Van Damme, M., Lefeber, D., Duran, B.M.Y., Beyl, P.: Exploiting natural dynamics to reduce energy consumption by controlling the compliance of soft actuators. International Journal of Robotics Research 25(4), 343–358 (2006)CrossRefGoogle Scholar
  13. 13.
    Hurst, J.W., Chestnutt, J.E., Rizzi, A.: Design and philosophy of the BiMASC, a highly dynamic biped. In: Proc of Intl. Conf. on Robotics and Automation (IEEE-ICRA), pp. 1863–1868 (April 2007)Google Scholar
  14. 14.
    Galloway, K., Clark, J., Koditschek, D.: Design of a tunable stiffness composite leg for dynamic locomotion. In: Proc. of Intl. Design Engineering Technical Conf, ASME-IDETC/CIE (2009)Google Scholar
  15. 15.
    Tsagarakis, N.G., Sardellitti, I., Caldwell, D.: A new variable stiffness actuator (compact-vsa): Design and modeling. In: Proc. of Intl. Conf. on Intelligent Robots and Systems (2011)Google Scholar
  16. 16.
    Pelrine, R., Kornbluh, R., Pei, Q., Joseph, J.: High-speed electrically actuated elastomers with strain greater than 100%. Science 287(5454), 836–839 (2000)CrossRefGoogle Scholar
  17. 17.
    Cianchetti, M., Mattoli, V., Mazzolai, B., Laschi, C., Dario, P.: A new design methodology of electrostrictive actuators for bio-inspired robotics. Sensors and Actuators B: Chemical 142, 288–297 (2009)CrossRefGoogle Scholar
  18. 18.
    Brochu, P., Pei, Q.: Advances in dielectric elastomers for actuators and articial muscles. Macromolecular Rapid Communications 31 (2009)Google Scholar
  19. 19.
    Carpi, F., De Rossi, D., Kornbluh, R., Pelrine, R., Sommer-Larsen, P. (eds.): Dielectric Elastomers as Electromechanical Transducers. Elsevier (2008)Google Scholar
  20. 20.
    Pelrine, R., Kornbluh, R., Prahlad, H., Sharma, S., Chavez, B., Czyzyk, D., Wong-Foy, A., Stanford, S.: Tear resistant electroactive polymer transducers. U.S. Patent (7,804,227) (2010)Google Scholar
  21. 21.
    Dastoor, S., Cutkosky, M.R.: Design of dielectric electroactive polymers for a compact and scalable variable stiffness device. In: Proc. of Intl. Conf. on Robotics and Automation, IEEE-ICRA (2012)Google Scholar
  22. 22.
    Kornbluh, R.: Fundamental configurations for dielectric elastomer actuators. In: Carpi, F., De Rossi, D., Kornbluh, R., Pelrine, R., Sommer-Larsen, P. (eds.) Dielectric Elastomers as Electromechanical Transducers. Elsevier (2008)Google Scholar
  23. 23.
    Kofod, G., Sommer-Larsen, P., Kornbluh, R., Pelrine, R.: Actuation response of polyacrylate dielectric elastomers. Journal of Intelligent Material Systems and Structures 13, 787–793 (2003)CrossRefGoogle Scholar
  24. 24.
    Josephson, R.K.: Mechanical power output from striated muscle during cyclic contraction. Journal of Experimental Biology 114, 493–512 (1985)Google Scholar
  25. 25.
    Dickinson, M.H., Farley, C.T., Full, R.J., Koehl, M.A.R., Kram, R., Lehman, S.: How animals move: An integrative view. Science 288(5463), 100–106 (2000)CrossRefGoogle Scholar
  26. 26.
    Glassman, E.L., Desbiens, A.L., Tobenkin, M., Cutkosky, M., Tedrake, R.: Region of attraction estimation for a perching aircraft: A lyapunov method exploiting barrier certificates. In: Proc. of Intl. Conf. on Robotics and Automation, IEEE-ICRA (2012)Google Scholar
  27. 27.
    Hyde, J.M., Cutkosky, M.R.: Controlling contact transition. IEEE Control Systems 14, 25–30 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations