Skip to main content

A Soft-Body Controller with Ubiquitous Sensor Feedback

  • Conference paper
Biomimetic and Biohybrid Systems (Living Machines 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7375))

Included in the following conference series:

Abstract

In this paper, we investigate control architectures that combine implicit models of behavior with ubiquitous sensory input, for soft hyper-redundant robots. Using a Wilson-Cowan neuronal model in a continuum arrangement that mirrors the arrangement of muscles in an earthworm, we can create a wide range of steady waves with descending signals. Here, we demonstrate how sensory feedback from individual segment strains can be used to modulate the behavior in desirable ways.

This work was supported by the NSF grant IIS-1065489 and by Roger D. Quinn and Hillel J. Chiel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ostrowski, J., Burdick, J.: Gait Kinematics for a Serpentine Robot. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA), Minneapolis, MN, vol. 2, pp. 1294–1299 (1996)

    Google Scholar 

  2. Hannan, M.W., Walker, I.D.: Analysis and Initial Experiments for a Novel Elephant’s Trunk Robot. In: Proc. IEEE Int. Conf. Intelligent Robots and Systems (IROS), pp. 330–337 (2000)

    Google Scholar 

  3. Menciassi, A., Gorini, A., Pernorio, G., Dario, P.: A SMA Actuated Artificial Earthworm. In: Proc. Int. Conf. Robotics and Automation, ICRA (2004)

    Google Scholar 

  4. Tsakiris, D.P., Sfakiotakis, M., Menciassi, A., La Spina, G., Dario, P.: Polchaete-like Undulatory Robotic Locomotion. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA), Barcelona, Spain, pp. 3018–3023 (2005)

    Google Scholar 

  5. Trimmer, B., Takesian, A., Sweet, B.: Caterpillar locomotion: a new model for soft-bodied climbing and burrowing robots. In: Proc. 7th Int. Symp. Technology and the Mine Problem, Monterey, CA (2006)

    Google Scholar 

  6. Wang, K., Yan, G.: Micro robot prototype for colonoscopy and in vitro experiments. J. Med. Eng. & Tech. 31(1), 24–28 (2007)

    Article  Google Scholar 

  7. Omori, H., Nakamura, T., Yada, T.: An underground explorer robot based on peristaltic crawling of earthworm. Industrial Robot 36(4), 358–364 (2009)

    Article  Google Scholar 

  8. Hirose, S.: Biologically Inspired Robots: Snake-Like Locomotors and Manipulators. Oxford University Press, Oxford (1993)

    Google Scholar 

  9. Hatton, R.L., Choset, H.: Generating gaits for snake robots: annealed chain fitting and keyframe wave extraction. Auton. Robot. 28, 271–281 (2010)

    Article  Google Scholar 

  10. Ijspeert, A.J., Crespi, A., Ryczko, D., Cabelguen, J.M.: From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817), 1416–1420 (2007)

    Article  Google Scholar 

  11. Brusca, R.C., Brusca, G.J.: Invertebrates. Sinauer Associates, Sunderland

    Google Scholar 

  12. Ekeberg, Ö., Griller, S.: Simulations of neuromuscular control in lamprey swimming. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 354, 895–902 (1999)

    Article  Google Scholar 

  13. Quillin, K.J.: Kinematic scaling of locomotion by hydrostatic animals: ontogeny of peristaltic crawling by the earthworm lumbricusterrestris. J. Exp. Biol. 202, 661–674 (1999)

    Google Scholar 

  14. Boxerbaum, A.S., Chiel, H.J., Quinn, R.D.: Continuous Wave Peristaltic Locomotion. International Journal of Robotics Research (January 2012)

    Google Scholar 

  15. Boxerbaum, A.S., Chiel, H.J., Quinn, R.D.: A New Theory and Methods for Creating Peristaltic Motion in a Robotic Platform. In: Proc. Int. Conf. Robotics and Automation (ICRA), pp. 1221–1227 (2010)

    Google Scholar 

  16. Quinn, R.D., Nelson, G.M., Ritzmann, R.E., Bachmann, R.J., Kingsley, D.A., Offi, J.T., Allen, T.J.: Parallel Strategies for Implementing Biological Principles Into Mobile Robots. Int. J. Robotics Research 22(3), 169–186 (2003)

    Article  Google Scholar 

  17. Mangan, E.V., Kingsley, D.A., Quinn, R.D., Chiel, H.J.: Development of a peristaltic endoscope. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA), pp. 347–352 (2002)

    Google Scholar 

  18. Ayers, J., Cricket, W., Chris, O.: Lamprey Robots. In: Proc. Int. Symp. Aqua Biomechanisms (2000)

    Google Scholar 

  19. Zhang, D., Hu, D., Shen, L., Xie, H.: Design of an artificial bionic neural network to control fish-robot’s locomotion. Neurocomputing 71, 648–654 (2008)

    Article  Google Scholar 

  20. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: A review. Neural Networks 21, 642–653 (2008)

    Article  Google Scholar 

  21. Matsuo, T., Yokoyama, T., Ueno, D., Ishii, K.: Biomimetic Motion Control System Based on a CPG for an Amphibious Multi-Link Mobile Robot. J. Bionic Eng. Suppl., 91–97 (2008)

    Google Scholar 

  22. Wadden, T., Hellgren, J., Lansner, A., Grillner, S.: Intersegmental coordination in the lamprey: simulations using a network model without segmental boundaries. Biol. Cybernetics 76, 1–9 (1997)

    Article  Google Scholar 

  23. Boyle, J., Berri, S., Cohen, N.: Gait Modulation in C. Elegans: An Integrated Neuromechanical Model. Frontiers in Computational Neuroscience (March 2012)

    Google Scholar 

  24. Moore, A.R.: Muscle tension and reflexes in earthworm. Journal of General Physiology 5, 327 (1923)

    Article  Google Scholar 

  25. Gray, J., Lissmann, W.: Studies in Animal Locomotion VII: Locomotory reflexes in the Earthworm. Journal of Experimental Biology 15, 506–517

    Google Scholar 

  26. Collier, H.: Central nervious activity in the earthworm. Journal of Experimental Biology (1939)

    Google Scholar 

  27. Boxerbaum, A.S., Horchler, A.D., Shaw, K., Chiel, H.J., Quinn, R.D.: A Controller for Continuous Wave Peristaltic Locomotion. In: International Conference on Intelligent Robots and Systems, IROS (2011)

    Google Scholar 

  28. Wilson, H.R., Cowan, J.D.: Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons. Biophys. J. 12, 1–24 (1972)

    Article  Google Scholar 

  29. Ermentrout, G.B., Cowan, J.D.: A Mathematical Theory of Visual Hallucination Patterns. Biol. Cybernetics 34, 137–150 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boxerbaum, A.S., Daltorio, K.A., Chiel, H.J., Quinn, R.D. (2012). A Soft-Body Controller with Ubiquitous Sensor Feedback. In: Prescott, T.J., Lepora, N.F., Mura, A., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2012. Lecture Notes in Computer Science(), vol 7375. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31525-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31525-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31524-4

  • Online ISBN: 978-3-642-31525-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics