Incremental Learning in a 14 DOF Simulated iCub Robot: Modeling Infant Reach/Grasp Development

  • Piero Savastano
  • Stefano Nolfi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7375)


We present a neurorobotic model that develops reaching and grasping skills analogous to those displayed by infants during their early developmental stages. The learning process is realized in an incremental manner, taking into account the reflex behaviors initially possessed by infants and the neurophysiological and cognitive maturations occurring during the relevant developmental period. The behavioral skills acquired by the robots closely match those displayed by children. Moreover, the comparison of the results obtained in a control non-incremental experiment demonstrates how the limitations characterizing the initial developmental phase channel the learning process toward better solutions.


Connection Weight Humanoid Robot Incremental Learn Behavioral Skill Experimental Brain Research 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angulo-Kinzler, R.: Exploration and selection of intralimb coordination patterns in 3-month-old infants. Journal of Motor Behavior 33, 363–376 (2001)CrossRefGoogle Scholar
  2. 2.
    Atkinson, J.: Human visual development over the first 6 months of life. A review and a hypothesis. Human Neurobiology 3(2), 61–74 (1984)Google Scholar
  3. 3.
    Berthier, N.E., Clifton, R.K., McCall, D.D., Robin, D.J.: Proximodistal structure of early reaching in human infants. Experimental Brain Research 127(3), 259–269 (1999)CrossRefGoogle Scholar
  4. 4.
    Berthier, N.E., Keen, R.: Development of reaching in infancy. Experimental Brain Research (2005)Google Scholar
  5. 5.
    Berthouze, L., Lungarella, M.: Motor skill acquisition under environmental perturbations: On the necessity of alternate freezing and freeing of degrees of freedom. Adaptive Behavior 12(1), 47–63 (2004)CrossRefGoogle Scholar
  6. 6.
    Burnod, Y., Baraduc, P., Battaglia-Mayer, A., Guigon, E., Koechlin, E., Ferraina, S., Lacquaniti, F., Caminiti, R.: Parieto-frontal coding of reaching: an integrated framework. Experimental Brain Research 129(3), 325–346 (1999)CrossRefGoogle Scholar
  7. 7.
    Courage, M.L., Adams, R.J.: Infant peripheral vision: the development of monocular visual acuity in the first 3 months of postnatal life. Vision Research 36(8), 1207–1215 (1996)CrossRefGoogle Scholar
  8. 8.
    Hendrickson, A., Druker, D.: The development of parafoveal and mid-peripheral human retina. Behavioural Brain Research 49(1), 21–31 (1992)CrossRefGoogle Scholar
  9. 9.
    Lantz, C., Meln, K., Forssberg, H.: Early infant grasping involves radial fingers. Developmental Medicine and Child Neurology 38(8), 668–674 (1996)CrossRefGoogle Scholar
  10. 10.
    Konczak, J., Borutta, M., Topka, H., Dichgans, J.: The development of goal-directed reaching in infants: hand trajectory formation and joint torque control. Experimental Brain Research 106(1), 156–168 (1995)CrossRefGoogle Scholar
  11. 11.
    Konczak, J., Borutta, M., Dichgans, J.: The development of goal-directed reaching in infants. II. Learning to produce task-adequate patterns of joint torque. Experimental Brain Research 113(3), 465–474 (1997)CrossRefGoogle Scholar
  12. 12.
    Konczak, J., Dichgans, J.: The development toward stereotypic arm kinematics during reaching in the first 3 years of life. Experimental Brain Research 117(2), 346–354 (1997)CrossRefGoogle Scholar
  13. 13.
    Martin, J.H.: The corticospinal system: from development to motor control. The Neuroscientist 11(2), 161–173 (2005)CrossRefGoogle Scholar
  14. 14.
    McCarty, M.K., Clifton, R.K., Ashmead, D.H., Lee, P., Goulet, N.: How infants use vision for grasping objects. Child Development 72, 973–987 (2001)CrossRefGoogle Scholar
  15. 15.
    Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT Press, Cambridge (2000)Google Scholar
  16. 16.
    Nolfi, S., Marocco, D.: Evolving robots able to integrate sensory-motor information over time. Theory in Biosciences 120(3-4), 287–310 (2001)Google Scholar
  17. 17.
    Oztop, E., Bradley, N.S., Arbib, M.A.: Infant grasp learning: a computational model. Experimental Brain Research 158(4), 480–503 (2004)CrossRefGoogle Scholar
  18. 18.
    Paine, R.W., Tani, J.: Motor primitive and sequence self-organization in a hierarchical recurrent neural network. Neural Networks 17(8-9) (2004)Google Scholar
  19. 19.
    Piaget, J.: The origin of intelligence in the child. Routledge and Kegan Paul, London (1953)Google Scholar
  20. 20.
    Piek, J.: The role of variability in early motor development. Infant Behavior and Development 25(4), 452–465 (2002)CrossRefGoogle Scholar
  21. 21.
    Pfeifer, R., Iida, F., Bongard, J.: New robotics: design principles for intelligent systems. Artificial Life 11(1-2), 99–120 (2005)CrossRefGoogle Scholar
  22. 22.
    Rochat, P.: Object manipulation and exploration in 2- to 5-month-old infants. Developmental Psychology 25(6), 871–884 (1989)CrossRefGoogle Scholar
  23. 23.
    Sandini, G., Metta, G., Vernon, D.: Robotcub: An open framework for research in embodied cognition. International Journal of Humanoid Robotics 8(2), 18–31 (2004)Google Scholar
  24. 24.
    Schaal, S.: Arm and hand movement control. In: Arbib, M.A. (ed.) Handbook of Brain Theory and Neural Networks, 2nd edn., pp. 110–113. MIT Press, Cambridge (2002)Google Scholar
  25. 25.
    Schlesinger, M.: Evolving agents as a metaphor for the developing child. Developmental Science 7, 154–168 (2004)Google Scholar
  26. 26.
    Sokolov, Y.N.: Perception and the conditional reflex. Pergamon Press, London (1963)Google Scholar
  27. 27.
    Spencer, J.P., Thelen, E.: Spatially Specific Changes in Infants’ Muscle Coactivity as They Learn to Reach. Infancy 1(3), 275–302 (2000)CrossRefGoogle Scholar
  28. 28.
    Thelen, E., Corbetta, D., Kamm, K., Spencer, J.P., Schneider, K., Zernicke, R.F.: The Transition to Reaching: Mapping Intention and Intrinsic Dynamics The Transition to Reaching: Mapping Intention and Intrinsic Dynamics. Child Development 64(4), 1058–1098 (1993)CrossRefGoogle Scholar
  29. 29.
    Thelen, E., Corbetta, D., Spencer, J.P.: Development of reaching during the first year: role of movement speed. Journal of experimental psychology. Human Perception and Performance 22(5), 1059–1076 (1996)CrossRefGoogle Scholar
  30. 30.
    Tsagarakis, N.G., Metta, G., Sandini, G., Vernon, D., Beira, R., Santos-Victor, J., Carrazzo, M.C., Becchi, F., Caldwell, D.G.: iCub The Design and Realization of an Open Humanoid Platform for Cognitive and Neuroscience Research. International Journal of Advanced Robotics 21(10), 1151–1175 (2007)CrossRefGoogle Scholar
  31. 31.
    Turkewitz, G., Kenny, P.: Limitations on input as a basis for neural organization and perceptual development: A preliminary theoretical statement. Developmental Psychobiology 1, 357–368 (1982)CrossRefGoogle Scholar
  32. 32.
    von Hofsten, C.: Eye-Hand Coordination in the Newborn. Developmental Psychology 18(3), 450–461 (1982)CrossRefGoogle Scholar
  33. 33.
    von Hofsten, C.: Developmental changes in the organization of prereaching movements. Developmental Psychology 20(3), 378–388 (1984)CrossRefGoogle Scholar
  34. 34.
    von Hofsten, C., Rönnqvist, L.: The structuring of neonatal arm movements. Child Development 64(4), 1046–1057 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Piero Savastano
    • 1
  • Stefano Nolfi
    • 1
  1. 1.ISTC-CNRRomeItaly

Personalised recommendations