Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 175))

Abstract

This work presents a novel approach to synthesize an artificial visual cortex based on what we call organic genetic programming. Primate brains have several distinctive features that help in the outstanding display of perception achieved by the visual system, including binocular vision, memory, learning, and recognition, to mention but a few. These features are processed by a complex arrangement of highly interconnected and numerous cortical visual areas. This paper describes a system composed of an artificial dorsal pathway, or where stream, and an artificial ventral pathway, or what stream, that are fused to create a kind of artificial visual cortex. The idea is to show that genetic programming is able to evolve a high number of heterogeneous trees thanks to the hierarchical structure of our virtual brain. Thus, the proposal uses two key ideas: 1) the recognition of objects can be achieved by a hierarchical structure using the concept of function composition, 2) the evolved functions can be related to the tissues of an artificial organ. Experimental results provide evidence that high recognition rates could be achieved for a well-known multiclass object recognition problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayala, F.J.: Teleological explanations in evolutionary biology. Philosophy of Science 37(1), 1–15 (1970)

    Article  MathSciNet  Google Scholar 

  2. Barton, R.A.: Visual specialization and brain evolution in primates. Proceedings of the Royal Society of London Series B-Biological Sciences 265(1409), 1933–1937 (1998)

    Article  Google Scholar 

  3. Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011), Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

    Google Scholar 

  4. Clemente, E., Olague, G., Dozal, L., Mancilla, M.: Object Recognition with an Optimized Ventral Stream Model Using Genetic Programming. In: Di Chio, C., Agapitos, A., Cagnoni, S., Cotta, C., de Vega, F.F., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Langdon, W.B., Merelo-Guervós, J.J., Preuss, M., Richter, H., Silva, S., Simões, A., Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Togelius, J., Urquhart, N., Uyar, A.Ş., Yannakakis, G.N. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 315–325. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Creem, S.H., Proffitt, D.R.: Defining the cortical visual systems: “what”, “where”, and “how”. Acta Psychologica 107, 43–68 (2001)

    Article  Google Scholar 

  6. Desimone, R., Duncan, J.: Neural mechanisms of selective visual attention. Annu. Rev. Neurosci., 193–222

    Google Scholar 

  7. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories, p. 178 (2004)

    Google Scholar 

  8. Fukushima, K.: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics 36, 193–202 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hubel, D.H.: Exploration of the primary visual cortex. Nature, 515–524 (1982)

    Google Scholar 

  10. Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. 148(3), 574–591 (1953)

    Google Scholar 

  11. Itti, L., Koch, C.: Computational modelling of visual attention. Nature Review Neuroscience 2(3), 194–203 (2001)

    Article  Google Scholar 

  12. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. 4(4), 219–227 (1985)

    Google Scholar 

  13. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  14. Lennox, J.G.: Darwin was a teleologist. Biology and Philosophy 8(4), 409–421 (1993)

    Article  Google Scholar 

  15. Mel, B.W.: Seemore: Combining color, shape, and texture histogramming in a neurally-inspired approach to visual object recognition. Neural Computation 9, 777–804 (1997)

    Article  Google Scholar 

  16. Milanese, R.: Detecting salient regions in an image: from biological evidence to computer implementation. PhD thesis, Department of Computer Science, University of Genova, Switzerland (December 1993)

    Google Scholar 

  17. Milner, A.D., Goodale, M.A.: The Visual Brain in Action, 2nd edn. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  18. Mutch, J., Lowe, D.G.: Object class recognition and localization using sparse features with limited receptive fields. Int. J. Comput. Vision 80, 45–57 (2008)

    Article  Google Scholar 

  19. Oram, M.W., Perrett, D.I.: Modeling visual recognition from neurobiological constraints. Neural Networks 7(6), 945–972 (1994)

    Article  Google Scholar 

  20. Rensink, R.A.: The dynamic representation of scenes. Visual Cognition 7(1-3), 17–42 (2000)

    Article  Google Scholar 

  21. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature Neuroscience (11), 1019–1025

    Google Scholar 

  22. Schneider, G.E.: Contrasting visuomotor functions of tectum and cortex in the golden hamster. Psychologische Forschung 31(1), 52–62

    Google Scholar 

  23. Schneider, G.E.: Two visual systems. Science 163(3870), 895–902 (1969)

    Article  Google Scholar 

  24. Serre, T., Kouh, C., Cadieu, M., Knoblich, G., Kreiman, U., Poggio, T.: A theory of object recognition: Computations and circuits in the feedforward path of the ventral stream in primate visual cortex. Technical report, Massachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory, CBCL-259 (2005)

    Google Scholar 

  25. Short, T.: Darwin’s concept of final cause: neither new nor trivial. Biology and Philosophy 17, 323–340 (2002), doi:10.1023/A:1020173708395

    Article  Google Scholar 

  26. Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cognitive Psychology 12(1), 97–136 (1980)

    Article  Google Scholar 

  27. Ullman, S., Vidal-Naquet, M., Sali, E.: Visual features of intermediate complexity and their use in classification. Nature Neuroscience 5(7), 682–687 (2002)

    Google Scholar 

  28. Ungerleider, L.G., Haxby, J.V.: “What” and “where” in the human brain. Current Opinion in Neurobiology 4(2), 157–165 (1994)

    Article  Google Scholar 

  29. Ungerleider, L.G., Mishkin, M.: Two Cortical Visual Systems, ch. 18, pp. 549–586 (1982)

    Google Scholar 

  30. Walther, D., Koch, C.: Modeling attention to salient proto-objects. Neural Networks 19(9), 1395–1407 (2006)

    Article  MATH  Google Scholar 

  31. Wolfe, J.M.: Visual Attention, 2nd edn., ch. 8, pp. 335–386. Academic Press (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eddie Clemente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Clemente, E., Olague, G., Dozal, L. (2013). Purposive Evolution for Object Recognition Using an Artificial Visual Cortex. In: Schütze, O., et al. EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II. Advances in Intelligent Systems and Computing, vol 175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31519-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31519-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31518-3

  • Online ISBN: 978-3-642-31519-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics