Advertisement

Fast Circle Detection Using Harmony Search Optimization

  • Erik Cuevas
  • Humberto Sossa
  • Valentín Osuna
  • Daniel Zaldivar
  • Marco Pérez-Cisneros
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 175)

Abstract

Automatic circle detection in digital images has received considerable attention over the last years. Recently, several robust circle detectors, based on evolutionary algorithms (EA), have been proposed. They have demonstrated to provide better results than those based on the Hough Transform. However, since EA-detectors usually need a large number of computationally expensive fitness evaluations before a satisfying result can be obtained; their use for real time has been questioned. In this work, a new algorithm based on the Harmony Search Optimization (HSO) is proposed to reduce the number of function evaluation in the circle detection process. In order to avoid the computation of the fitness value of several circle candidates, the algorithm estimates their values by considering the fitness values from previously calculated neighboring positions. As a result, the approach can substantially reduce the number of function evaluations preserving the good search capabilities of HSO. Experimental results from several tests on synthetic and natural images with a varying complexity range have been included to validate the efficiency of the proposed technique regarding accuracy, speed and robustness.

Keywords

Hough Transform Harmony Memory Pitch Adjust Muskingum Model Circle Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    da Fontoura Costa, L., Marcondes Cesar Jr., R.: Shape Analysis and Classification. CRC Press, Boca Raton (2001)zbMATHGoogle Scholar
  2. 2.
    Muammar, H., Nixon, M.: Approaches to extending the Hough transform. In: Proc. Int. Conf. on Acoustics, Speech and Signal Processing ICASSP, vol. 3, pp. 1556–1559 (1989)Google Scholar
  3. 3.
    Atherton, T.J., Kerbyson, D.J.: Using phase to represent radius in the coherent circle Hough transform. In: Proc. IEE Colloquium on the Hough Transform. IEEE, London (1993)Google Scholar
  4. 4.
    Shaked, D., Yaron, O., Kiryati, N.: Deriving stopping rules for the probabilistic Hough transform by sequential analysis. Comput. Vision Image Understanding 63, 512–526 (1996)CrossRefGoogle Scholar
  5. 5.
    Xu, L., Oja, E., Kultanen, P.: A new curve detection method: Randomized Hough transform (RHT). Pattern Recognition Lett. 11(5), 331–338 (1990)zbMATHCrossRefGoogle Scholar
  6. 6.
    Han, J.H., Koczy, L.T., Poston, T.: Fuzzy Hough transform. In: Proc. 2nd Int. Conf. on Fuzzy Systems, vol. 2, pp. 803–808 (1993)Google Scholar
  7. 7.
    Lu, W., Tan, J.L.: Detection of incomplete ellipse in images with strong noise by iterative randomized Hough transform (IRHT). Pattern Recognition 41(4), 1268–1279 (2008)zbMATHCrossRefGoogle Scholar
  8. 8.
    Ayala-Ramirez, V., Garcia-Capulin, C.H., Perez-Garcia, A., Sanchez-Yanez, R.E.: Circle detection on images using genetic algorithms. Pattern Recognition Letters 27, 652–657 (2006)CrossRefGoogle Scholar
  9. 9.
    Cuevas, E., Sencin-Echauri, F., Zaldivar, D.: Pérez-Cisneros, M.: Multi-circle detection on images using artificial bee colony (ABC) optimization. Soft Comput. 16(2), 281–296 (2012)CrossRefGoogle Scholar
  10. 10.
    Cuevas, E., Ortega-Sánchez, N., Zaldivar, D., Pérez-Cisneros, M.: Circle Detection by Harmony Search Optimization. Journal of Intelligent & Robotic Systems 66, 359–376 (2012)CrossRefGoogle Scholar
  11. 11.
    Cuevas, E., Oliva, D., Zaldivar, D., Pérez-Cisneros, M., Sossa, H.: Circle detection using electro-magnetism optimization. Information Sciences 182(1), 40–55 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cuevas, E., Zaldivar, D., Pérez-Cisneros, M., Ramirez-Ortegon, M.: Circle detection using discrete differential evolution optimization. Pattern Anal. Appl. 14(1), 93–107 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dasgupta, S., Das, S., Biswas, A., Abraham, A.: Automatic circle detection on digital images whit an adaptive bacterial foraging algorithm. Soft Computing (2009), doi:10.1007/s00500-009-0508-zGoogle Scholar
  14. 14.
    Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulations 76, 60–68 (2001)CrossRefGoogle Scholar
  15. 15.
    Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 188, 1567–1579 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Omran, M.G.H., Mahdavi, M.: Global-best harmony search. Appl. Math. Comput. 198, 643–656 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering optimization, harmony search theory and practice. Comput. Methods Appl. Mech. Eng. 194, 3902–3933 (2005)zbMATHCrossRefGoogle Scholar
  18. 18.
    Lee, K.S., Geem, Z.W., Lee, S.H., Bae, K.W.: The harmony search heuristic algorithm for discrete structural optimization. Eng. Optim. 37, 663–684 (2005)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Jin, Y.: Comprehensive survey of fitness approximation in evolutionary computation. Soft Computing 9, 3–12 (2005)CrossRefGoogle Scholar
  20. 20.
    Jin, Y.: Surrogate-assisted evolutionary computation: Recent advances and future challenges. Swarm and Evolutionary Computation 1, 61–70 (2011)CrossRefGoogle Scholar
  21. 21.
    Branke, J., Schmidt, C.: Faster convergence by means of fitness estimation. Soft Computing 9, 13–20 (2005)CrossRefGoogle Scholar
  22. 22.
    Zhou, Z., Ong, Y., Nguyen, M., Lim, D.: A Study on Polynomial Regression and Gaussian Process Global Surrogate Model in Hierarchical Surrogate-Assisted Evolutionary Algorithm. In: IEEE Congress on Evolutionary Computation (ECiDUE 2005), Edinburgh, United Kingdom, September 2-5 (2005)Google Scholar
  23. 23.
    Ratle, A.: Kriging as a surrogate fitness landscape in evolutionary optimization. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 15, 37–49 (2001)CrossRefGoogle Scholar
  24. 24.
    Lim, D., Jin, Y., Ong, Y., Sendhoff, B.: Generalizing Surrogate-assisted Evolutionary Computation. IEEE Transactions on Evolutionary Computation 14(3), 329–355 (2010)CrossRefGoogle Scholar
  25. 25.
    Ong, Y., Lum, K., Nair, P.: Evolutionary Algorithm with Hermite Radial Basis Function Interpolants for Computationally Expensive Adjoint Solvers. Computational Optimization and Applications 39(1), 97–119 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Luoa, C., Shao-Liang, Z., Wanga, C., Jiang, Z.: A metamodel-assisted evolutionary algorithm for expensive optimization. Journal of Computational and Applied Mathematics (2011), doi:10.1016/j.cam.2011.05.047Google Scholar
  27. 27.
    Bresenham, J.E.: A Linear Algorithm for Incremental Digital Display of Circular Arcs. Communications of the ACM 20, 100–106 (1977)zbMATHCrossRefGoogle Scholar
  28. 28.
    Van-Aken, J.R.: An Efficient Ellipse Drawing Algorithm. CG&A 4, 24–35 (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Erik Cuevas
    • 1
  • Humberto Sossa
    • 2
  • Valentín Osuna
    • 2
  • Daniel Zaldivar
    • 1
  • Marco Pérez-Cisneros
    • 1
  1. 1.Dept. de C. ComputCUCEI-UDEGGuadalajaraMexico
  2. 2.CIC-IPNMexico CityMexico

Personalised recommendations