A Hyperheuristic Approach for Guiding Enumeration in Constraint Solving

  • Broderick Crawford
  • Carlos Castro
  • Eric Monfroy
  • Ricardo Soto
  • Wenceslao Palma
  • Fernando Paredes
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 175)

Abstract

In this paper we design and evaluate a dynamic selection mechanism of enumeration strategies based on the information of the solving process. Unlike previous research works we focus in reacting on the fly, allowing an early replacement of bad-performance strategies without waiting the entire solution process or an exhaustive analysis of a given class of problems. Our approach uses a hyperheuristic approach that operates at a higher level of abstraction than the Constraint Satisfaction Problems solver. The hyperheuristic has no problem-specific knowledge. It manages a portfolio of enumeration strategies. At any given time the hyperheuristic must choose which enumeration strategy to call. The experimental results show the effectiveness of our approach where our combination of strategies outperforms the use of individual strategies.

Keywords

Choice Function Constraint Programming Constraint Satisfaction Problem Enumeration Strategy Resolution Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barták, R., Rudová, H.: Limited assignments: A new cutoff strategy for incomplete depth-firstsearch. In: Haddad, H., Liebrock, L.M., Omicini, A., Wainwright, R.L. (eds.) SAC, pp. 388–392. ACM (2005)Google Scholar
  2. 2.
    Beck, J.C., Prosser, P., Wallace, R.J.: Toward understanding variable ordering heuristics for constraint satisfaction problems. In: Fourteenth Irish Artificial Intelligence and Cognitive Science Conference (AICS), pp. 11–16 (2003)Google Scholar
  3. 3.
    Bessière, C., Zanuttini, B., Fernandez, C.: Measuring search trees. In: Proceedings ECAI 2004 Workshop on Modelling and Solving Problems with Constraints, pp. 31–40. IOS Press (2004)Google Scholar
  4. 4.
    Borrett, J.E., Tsang, E.P.K., Walsh, N.R.: Adaptive constraint satisfaction: The quickest first principle. In: Wahlster, W. (ed.) ECAI, pp. 160–164. John Wiley and Sons, Chichester (1996)Google Scholar
  5. 5.
    Castro, C., Monfroy, E., Figueroa, C., Meneses, R.: An Approach for Dynamic Split Strategies in Constraint Solving. In: Gelbukh, A., de Albornoz, Á., Terashima-Marín, H. (eds.) MICAI 2005. LNCS (LNAI), vol. 3789, pp. 162–174. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Chenouard, R., Granvilliers, L., Sebastian, P.: Search heuristics for constraint-aided embodiment design. AI EDAM 23(2), 175–195 (2009)Google Scholar
  7. 7.
    Cowling, P.I., Kendall, G., Soubeiga, E.: A Hyperheuristic Approach to Scheduling a Sales Summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 176–190. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Crawford, B., Castro, C., Monfroy, E.: Using a choice function for guiding enumeration in constraint solving. In: 9th Mexican International Conference on Artificial Intelligence, MICAI 2010, Pachuca, Mexico, November 8-13, Special Sessions, Revised Papers, pp. 37–42 (2010) Google Scholar
  9. 9.
    Hamadi, Y., Monfroy, E., Saubion, F.: What is autonomous search? Technical Report MSR-TR-2008-80, Microsoft Research (2008)Google Scholar
  10. 10.
    Bayardo Jr., R.J., Miranker, D.P.: An optimal backtrack algorithm for tree-structured constraint satisfaction problems. Artif. Intell. 71(1), 159–181 (1994)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Mackworth, A.K., Freuder, E.C.: The complexity of some polynomial network consistency algorithms for constraint satisfaction problems. Artif. Intell. 25(1), 65–74 (1985)CrossRefGoogle Scholar
  12. 12.
    Maturana, J., Saubion, F.: From parameter control to search control: Parameter control abstraction in evolutionary algorithms. Constraint Programming Letters 4(1), 39–65 (2008)Google Scholar
  13. 13.
    Monfroy, E., Castro, C., Crawford, B.: Adaptive Enumeration Strategies and Metabacktracks for Constraint Solving. In: Yakhno, T., Neuhold, E.J. (eds.) ADVIS 2006. LNCS, vol. 4243, pp. 354–363. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Sadeh, N.M., Fox, M.S.: Variable and value ordering heuristics for the job shop scheduling constraint satisfaction problem. Artif. Intell. 86(1), 1–41 (1996)CrossRefGoogle Scholar
  15. 15.
    Sturdy, P.: Learning Good Variable Orderings. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, p. 997. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Talbi, E.G.: Metaheuristics: From Design to Implementation. Wiley Publishing (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Broderick Crawford
    • 1
  • Carlos Castro
    • 2
  • Eric Monfroy
    • 3
  • Ricardo Soto
    • 1
  • Wenceslao Palma
    • 1
  • Fernando Paredes
    • 4
  1. 1.Pontificia Universidad Católica de ValparaísoValparaísoChile
  2. 2.Universidad Técnica Federico Santa MaríaValparaísoChile
  3. 3.CNRS, LINA, Université de NantesNantesFrance
  4. 4.Escuela de Ingeniería IndustrialUniversidad Diego PortalesSantiagoChile

Personalised recommendations