Control of Nonlinear Dynamic Systems with the Cell Mapping Method

  • Jian-Qiao Sun
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 175)


This paper studies control problems of nonlinear dynamic systems using the cell mapping method. We first present the formulation of optimal control problem and Bellman’s principle of optimality. Then, we present the cell mapping methods and their application to optimal control problems of deterministic nonlinear dynamic systems. Examples of population dynamics control of two competing species are presented to demonstrate the effectiveness of the cell mapping method.


Controllable Region Optimal Control Problem Nonlinear Dynamic System Saddle Node Optimal Control Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bellman, R.: On the theory of dynamic programming. Proceedings of the National Academy of Science 38, 716–719 (1952)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bellman, R.: Dynamic Programming. Princeton Univeristy Press, Princeton (1957)zbMATHGoogle Scholar
  3. 3.
    Bursal, F.H., Hsu, C.S.: Application of a cell-mapping method to optimal control problems. International Journal of Control 49(5), 1505–1522 (1989)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Chan, W.L., Zhu, G.B.: Optimal birth control of population dynamics II. problems with free final time, phase constraints, and min-max costs. Journal of Mathematical Analysis and Applications 146, 523–539 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Chan, W.L., Zhu, G.B.: Overtaking optimal control problem of age-dependent populations with infinite horizon. Journal of Mathematical Analysis and Applications 150, 41–53 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Crespo, L.G., Sun, J.Q.: Optimal control of target tracking via simple cell mapping. Journal of Guidance and Control 24, 1029–1031 (2000)CrossRefGoogle Scholar
  7. 7.
    Crespo, L.G., Sun, J.Q.: Solution of fixed final state optimal control problems via simple cell mapping. Nonlinear Dynamics 23, 391–403 (2000)zbMATHCrossRefGoogle Scholar
  8. 8.
    Crespo, L.G., Sun, J.Q.: Optimal control of populations of competing species. Nonlinear Dynamics 27, 197–210 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Crespo, L.G., Sun, J.Q.: Stochastic optimal control of non-linear systems via short-time Gaussian approximation and cell mapping. Nonlinear Dynamics 28, 323–342 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Crespo, L.G., Sun, J.Q.: Fixed final time optimal control via simple cell mapping. Nonlinear Dynamics 31, 119–131 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Crespo, L.G., Sun, J.Q.: Stochastic optimal control of nonlinear dynamic systems via bellman’s principle and cell mapping. Automatica 39(12), 2109–2114 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Edelstein-Keshet, L.: Mathematical Models in Biology. Random House, New York (1988)zbMATHGoogle Scholar
  13. 13.
    Flashner, H., Burns, T.F.: Spacecraft momentum unloading: the cell mapping approach. Journal of Guidance, Control and Dynamics 13, 89–98 (1990)CrossRefGoogle Scholar
  14. 14.
    Hironori, H.: Optimal control of nonlinear population dynamics. IEEE Transactions on Systems, Man and Cybernetics SMC-10(1), 32–38 (1980)zbMATHCrossRefGoogle Scholar
  15. 15.
    Hrinca, I.: An optimal control problem for the Lotka-Volterra system with delay. Nonlinear Analysis, Theory, Methods and Applications 28(2), 247–262 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Hsu, C.S.: A theory of cell-to-cell mapping dynamical systems. Journal of Applied Mechanics 47, 931–939 (1980)zbMATHCrossRefGoogle Scholar
  17. 17.
    Hsu, C.S.: A discrete method of optimal control based upon the cell state space concept. Journal of Optimization Theory and Applications 46(4), 547–569 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Hsu, C.S.: Cell-to-cell Mapping, A Method of Global Analysis for Nonlinear Systems. Springer, New York (1987)zbMATHGoogle Scholar
  19. 19.
    Hsu, C.S., Chiu, H.M.: Global analysis of a system with multiple responses including a strange attractor. Journal of Sound and Vibration 114(2), 203–218 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Kiyotaka, I., Hashem, M.M.A., Keigo, W.: Evolution strategy with competing subpopulations. In: Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation, New York, pp. 306–311 (1997)Google Scholar
  21. 21.
    Kolosov, G.E.: On a problem of control of the size of populations. Journal of Computer and Systems Sciences International 34(4), 115–122 (1996)MathSciNetGoogle Scholar
  22. 22.
    Murray, J.: Mathematical Biology. Springer, New York (1989)zbMATHGoogle Scholar
  23. 23.
    Pianka, E.R.: Competition and Niche Theory. Sinauers Associates, Sunderland (1981)Google Scholar
  24. 24.
    Suzanne, L.: Optimal control of boundary habitat hostility for interacting species. Mathematical Methods in Applied Sciences 22(13), 1061–1077 (1999)zbMATHCrossRefGoogle Scholar
  25. 25.
    Wang, F.Y., Lever, P.J.A.: A cell mapping method for general optimum trajectory planning of multiple robotic arms. Robotics and Autonomous Systems 12, 15–27 (1994)CrossRefGoogle Scholar
  26. 26.
    Yen, J.Y.: Computer disk file track accessing controller design based upon cell to cell mapping. In: Proceedings of The American Control Conference (1992)Google Scholar
  27. 27.
    Yong, J., Zhou, X.Y.: Stochastic Controls, Hamiltonian Systems and HJB Equations. Springer, New York (1999)zbMATHGoogle Scholar
  28. 28.
    Zhang, J., Chen, L., Che, X.D.: Persistence and global stability for two species nonautonomous competition Lotka-Volterra patch-system with time delay. Nonlinear Analysis 37, 1019–1028 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Zhu, W.H., Leu, M.C.: Planning optimal robot trajectories by cell mapping. In: Proceedings of Conference on Robotics and Automation, pp. 1730–1735 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of EngineeringUniversity of CaliforniaMercedU.S.A.

Personalised recommendations