Advertisement

Analysis and Synchronization of the Hyperchaotic Yujun Systems via Sliding Mode Control

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 176)

Abstract

In this paper, we deploy sliding mode control (SMC) to derive new results for the global chaos synchronization of identical hyperchaotic Yujun systems (2010). The synchronization results derived in this paper are established using the Lyapunov stability theory. Numerical simulations have been provided to illustrate the sliding mode control results derived in this paper for the complete synchronization of identical hyperchaotic Yujun systems.

Keywords

Sliding mode control chaos synchronization hyperchaos hyperchaotic Yujun system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alligood, K.T., Sauer, T., Yorke, J.A.: Chaos: An Introduction to Dynamical Systems. Springer, New York (1997)Google Scholar
  2. 2.
    Lakshmanan, M., Murali, K.: Chaos in Nonlinear Oscillators: Controlling and Synchronization. World Scientific, Singapore (1996)MATHGoogle Scholar
  3. 3.
    Han, S.K., Kerrer, C., Kuramoto, Y.: Dephasing and burstling in coupled neural oscillators. Phys. Rev. Lett. 75, 3190–3193 (1995)CrossRefGoogle Scholar
  4. 4.
    Blasius, B., Huppert, A., Stone, L.: Complex dynamics and phase synchronization in spatially extended ecological system. Nature 399, 354–359 (1999)CrossRefGoogle Scholar
  5. 5.
    Kwok, H.S., Wallace, K., Tang, S., Man, K.F.: Online secure communication system using chaotic map. Internat. J. Bifurcat. Chaos 14, 285–292 (2004)MATHCrossRefGoogle Scholar
  6. 6.
    Kocarev, L., Parlitz, U.: General approach for chaos synchronization with applications to communications. Phys. Rev. Lett. 74, 5028–5030 (1995)CrossRefGoogle Scholar
  7. 7.
    Murali, K., Lakshmanan, M.: Secure communication using a compound signal using sampled-data feedback. Applied Math. Mech. 11, 1309–1315 (2003)Google Scholar
  8. 8.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Ho, M.C., Hung, Y.C.: Synchronization of two different chaotic systems using generalized active network. Phys. Lett. A 301, 421–428 (2002)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Huang, L., Feng, R., Wang, M.: Synchronization of chaotic systems via nonlinear control. Phys. Lett. A 320, 271–275 (2004)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Chen, H.K.: Global chaos synchronization of new chaotic systems via nonlinear control. Chaos, Solit. Frac. 23, 1245–1251 (2005)MATHGoogle Scholar
  13. 13.
    Sundarapandian, V.: Global chaos synchronization of Shimizu-Morioka and Liu-Chen chaotic systems by active nonlinear control. Internat. J. Advances in Science and Technology 2(4), 11–20 (2011)Google Scholar
  14. 14.
    Chen, S.H., Lü, J.: Synchronization of an uncertain unified system via adaptive control. Chaos, Solit. Frac. 14, 643–647 (2002)MATHCrossRefGoogle Scholar
  15. 15.
    Lu, J., Han, X., Lü, J.: Adaptive feedback synchronization of a unified chaotic system. Phys. Lett. A 329, 327–333 (2004)MATHCrossRefGoogle Scholar
  16. 16.
    Samuel, B.: Adaptive synchronization between two different chaotic dynamical systems. Adaptive Commun. Nonlinear Sci. Num. Simul. 12, 976–985 (2007)MATHCrossRefGoogle Scholar
  17. 17.
    Sundarapandian, V.: Adaptive synchronization of hyperchaotic Lorenz and hyperchaotic Lü systems. Internat. J. Instrument. Control Sys. 1(1), 1–18 (2011)Google Scholar
  18. 18.
    Park, J.H., Kwon, O.M.: A novel criterion for delayed feedback control of time-delay chaotic systems. Chaos, Solit. Fract. 17, 709–716 (2003)CrossRefGoogle Scholar
  19. 19.
    Wu, X., Lü, J.: Parameter identification and backstepping control of uncertain Lü system. Chaos, Solit. Fract. 18, 721–729 (2003)MATHCrossRefGoogle Scholar
  20. 20.
    Yu, Y.G., Zhang, S.C.: Adaptive backstepping synchronization of uncertain chaotic systems. Chaos, Solit. Fract. 27, 1369–1375 (2006)CrossRefGoogle Scholar
  21. 21.
    Yang, T., Chua, L.O.: Control of chaos using sampled-data feedback control. Internat. J. Bifurcat. Chaos. 9, 215–219 (1999)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Zhao, J., Lu, J.: Using sampled-data feedback control and linear feedback synchronization in a new hyperchaotic system. Chaos, Solit. Fract. 35, 376–382 (2008)CrossRefGoogle Scholar
  23. 23.
    Slotine, J.E., Sastry, S.S.: Tracking control of nonlinear systems using sliding surface with application to robotic manipulators. Internat. J. Control 38, 465–492 (1983)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Utkin, V.I.: Sliding mode control design principles and applications to electric drives. IEEE Trans. Industrial Electr. 40, 23–36 (1993)CrossRefGoogle Scholar
  25. 25.
    Sundarapandian, V.: Global chaos synchronization of Pehlivan systems by sliding mode control. Internat. J. Comp. Sci. Eng. 3(5), 2163–2169 (2011)Google Scholar
  26. 26.
    Yujun, N., Xingyuan, W., Mingjun, W., Huaguang, Z.: A new hyperchaotic system and its circuit implementation. Commun. Nonlinear Sci. Numer. Simulat. 15, 3518–3524 (2010)CrossRefGoogle Scholar
  27. 27.
    Hahn, W.: The Stability of Motion. Springer, New York (1967)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.R & D CentreVel Tech Dr. RR & Dr. SR Technical University AvadiChennaiIndia

Personalised recommendations