Performance Analysis of TCP & UDP in Co-located Variable Bandwidth Environment Sharing Same Transmission Links

  • Mayank Kumar Goyal
  • Yatendra Kumar Verma
  • Paras Bassi
  • Paurush Kumar Misra
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 176)

Abstract

Various communication protocols can be used simultaneously in a networking environment. This paper address the question that how much bandwidth is used by Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) when they share the same link in transport layer and which protocol consumes more bandwidth than the other. A set of simple experiments has been conducted to find the effect of constant bit rate UDP traffic on adaptive TCP and vice versa. For that, four types of TCP which are TCP Tahoe, TCP Reno, TCP NewReno and TCP Vegas are used with UDP in variable bandwidth environment. From there, we are going to differentiate them in terms of bandwidth usage and define how it works and describes several effects that occurred when they work together.

Keywords

TCP UDP NS2 Tahoe Reno NewReno Vegas RTT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Floyd, S., Fall, K.: Simulation based comparisons of Tahoe, Reno and SACK TCP. ACM Computer Communication Review 26(3), 5–21 (1996)CrossRefGoogle Scholar
  2. 2.
    Brakmo, L.S., Peterson, L.L.: TCP Vegas: End to End Congestion Avoidance on a Global Internet. IEEE Journal on Selected Areas in Communication 13, 1465–1490 (1995)CrossRefGoogle Scholar
  3. 3.
    Holland, G., Vaidya, N.: Analysis of TCP performance over mobile ad hoc networks. In: Proc. ACM/IEEE Int. Conf. on Mobile Computing, Seattle, WA, USA, pp. 219–230 (September 1999)Google Scholar
  4. 4.
    Shang, Y., Hadjitheodosiou, M.: TCP splitting protocol for broadband l satellite network. In: Proc. 23rd IEEE Digital Avionics Syst. Conf., Salt Lake City, UT. 2, pp. 11.C.3-1–11.C.3-9 (October 2005)Google Scholar
  5. 5.
    Zhu, J., Roy, S., Kim, J.H.: Performance modeling of TCP al-satellite hybrid networks. IEEE/ACM Trans. Netw. 14(4), 753–766 (2006)CrossRefGoogle Scholar
  6. 6.
    Zeng, W.G., Trajkovic, L.J.: TCP packet control for wireless networks. In: Proc. IEEE Int. Conf. on Wireless and Mobile Computing, Networking and Communications (WiMob 2005), Montreal, Canada, vol. 2, pp. 196–203 (August 2005)Google Scholar
  7. 7.
    Omueti, M., Trajkovic, L.J.: M-TCP+: using disconnection feedback to improve performance of TCP in wired/wireless networks. In: Proc. SPECTS, San Diego, CA, USA, vol. 2, pp. 443–450 (July 2007)Google Scholar
  8. 8.
    Casetti, C., Gerla, M., Mascolo, S., Sanadidi, M.Y., Wang, R.: TCP Westwood: end-to-end congestion control for wired/wireless networks. Wireless Netw. 8(5), 467–479 (2002)MATHCrossRefGoogle Scholar
  9. 9.
    Lee, H., Lee, S., Choi, Y.: The influence of the large bandwidth-delay product on TCP Reno, New Reno and SACK. In: Proc. Information Networking Conference, Oita, Japan, pp. 327–334 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mayank Kumar Goyal
    • 1
  • Yatendra Kumar Verma
    • 1
  • Paras Bassi
    • 1
  • Paurush Kumar Misra
    • 1
  1. 1.Deptt. of CSE/ITJIIT UniversityNoidaIndia

Personalised recommendations