Advertisement

Efficient Cryptography Technique on Perturbed Data in Distributed Environment

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 176)

Abstract

Data mining is a method through which we can search for a large pattern in huge database system. Now with the increasing growth of technology, the data requirements and amount of data will drastically increasing. Therefore, the data mining uses new methods for pattern matching which can be used for decision making. The organizations are stores data in bulk. Therefore, when a particular query is given by user, the amount of important or secure data can also be revealed as an answer of a query. This can harm to reputation of an organization. Therefore, privacy can concern to the above issue that not reveals any such kind of information about data provider and vice versa. Therefore, data needs to be modified without losing the data integrity. This paper outlines a method that achieve confidentiality from client and owner side which relatively less size of cipher text through mediator.

Keywords

Data mining Cryptography data perturbation privacy sensitive data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Srikant, R.: Privacy Preserving Data Mining. In: The Proceedings of the ACM SIGMOD Conference (2000)Google Scholar
  2. 2.
    Muralidhar, K., Sarathi, R.: A General additive data perturbation method for data base security. Journal of Management Science 45(10), 1399–1415 (2002)CrossRefGoogle Scholar
  3. 3.
    Agrawal, D., Aggarwal, C.C.: On the Design and Quantification of Privacy Preserving Data mining algorithms. In: ACM PODS Conference (2002)Google Scholar
  4. 4.
    Muralidhar, K., Sarathy, R.: Data Shuffling- a new masking approach for numerical data. Management Science (forthcoming 2006)Google Scholar
  5. 5.
    Iyengar, V.S.: Transforming data to satisfy privacy constraints. In: Proc. of SIGKDD 2002, Edmonton, Alberta, Canada (2002)Google Scholar
  6. 6.
    Lindell, Y., Pinkas, B.: Privacy Preserving Data Mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Yu, H., Vaidya, J., Jiang, X.: Privacy-Preserving SVM Classification on Vertically Partitioned Data. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 647–656. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Agarwal, D., Aggarwal, C.C.: On the design and quantification of privacy preserving data mining algorithms. In: Proceedings of the 20th Symposium on Principles of Database Systems, Santabarbara, California, USA (May 2001)Google Scholar
  9. 9.
    Karandikar, P., Deshpande, S.: Preserving Privacy in Data Mining using Data Distortion Approach. International Journal of Computer Engineering Science 1(2) (2011) ISSN: 2250-3439Google Scholar
  10. 10.
    Ravi Kumar, G., Ramachandra, G.A., Sunitha, G.: An Evolutionary Algorithm for Mining Association Rules Using Boolean Approach. International Journal of Computer Engineering Science 1(3) (2011) ISSN: 2250-3439Google Scholar
  11. 11.
    Kantarcioglu, M., Clifton, C.: Privacy-preserving distributed mining of association rules on horizontally partitioned data. In: The ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery (DMKD 2002), Madison, pp. 24–31 (June 2002)Google Scholar
  12. 12.
    Muralidhar, K., Sarathy, R., Parsa, R.A.: A general additive perturbation method for database security. Management Science 45(10), 1399–1415 (1999)CrossRefGoogle Scholar
  13. 13.
    Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private databases. In: Proc. of ACM SIGMOD (2003)Google Scholar
  14. 14.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers (2000)Google Scholar
  15. 15.
    Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the privacy preserving properties of random data perturbation techniques. In: Proc. of 3rd IEEE Int. Conf. on Data Mining, Washington, DC, USA, pp. 99–106 (2003)Google Scholar
  16. 16.
    Muralidhar, K., Parsa, R., Sarathy, R.: A general additive data perturbation method for database security. Management Science 19, 1399–1415 (1999)CrossRefGoogle Scholar
  17. 17.
    Pinkas, B.: Cryptographic techniques for privacy preserving data mining. SIGKDD Explorations, 12–19 (2002)Google Scholar
  18. 18.
    Evfimievski, A.: Randomization in privacy preserving data mining. ACM SIGKDD Explorations Newsletter 4, 43–48 (2002)CrossRefGoogle Scholar
  19. 19.
    Vaidya, J., Clifton, C.: Privacy-Preserving Data Mining: Why, How and When. IEEE Security and Privacy 2, 19–27 (2004)CrossRefGoogle Scholar
  20. 20.
    Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X., Zhu, M.Y.: Tools for privacy preserving distributed data mining. SIGKDD Explor. News., 28–34 (2002)Google Scholar
  21. 21.
    Weiss, G.M.: Data Mining in Telecommunications. In: Data Mining and Knowledge Discovery Handbook, A Complete Guide for Practitioners and Researchers, pp. 1189–1201. Kluwer Academic Publishers (2005)Google Scholar
  22. 22.
    Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the privacy preserving properties of random data perturbation techniques. In: Proceedings of the 3rd IEEE International Conference on Data Mining, Melbourne, Florida, November 19-22, pp. 99–106 (2003)Google Scholar
  23. 23.
    Muralidhar, K., Parsa, R., Sarathy, R.: A General Additive Data Perturbation Method for database Security. Management, 1399–1415 (1999)Google Scholar
  24. 24.
    Liu, L., Kantarcioglu, M., Thuraisingham, B.: The applicability of the perturbation based privacypreserving data mining for real-world data. Data & Knowledge Engineering 65, 5–21 (2008)CrossRefGoogle Scholar
  25. 25.
    Evfimievski, A., Srikant, R., Agrawal, R., Gehrke, J.: Privacy preserving mining of association rules. In: Proceedings of 8th ACM SIGKDD International Conference on Knowledge Discovery Data Mining (July 2002)Google Scholar
  26. 26.
    Lindell, Y., Pinkas, B.: Privacy Preserving Data Mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  27. 27.
    Vaidya, J., Clifton, C.: Privacy preserving association rule mining in vertically partitioned data. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, July 23-26 (2002)Google Scholar
  28. 28.
    Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the privacy preserving properties of random data perturbation techniques. In: Proc. of Intl. Conf. on Data Mining, ICDM (2003)Google Scholar
  29. 29.
    Kamakshi, P., VinayaBabu, A.: Preserving Privacy and Sharing the Data in Distributed Environment using Cryptographic Technique on Perturbed data. Journal of Computing 2(4) (April 2010) ISSN 2151-9617Google Scholar
  30. 30.
    Agarwal, R., Srikant, R.: Privacy preserving data mining. In: Procseedings of the 19th ACM SIGMOD Conference on Management of Data, Dallas, Texas, USA (May 2000)Google Scholar
  31. 31.
    Canny, J.: Collaborative filtering with privacy. In: IEEE Symposium on Security and Privacy, Oakland, pp. 45–57 (May 2002)Google Scholar
  32. 32.
    Jothimani, K., Antony SelvadossThanmani, S.: MS: Multiple Segments with Combinatorial Approach for Mining Frequent Item sets Over Data Streams. International Journal of Computer Engineering Science 2(2) (2012) ISSN : 2250-3439Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nishant Goswami
    • 1
  • Tarulata Chauhan
    • 1
  • Nishant Doshi
    • 2
  1. 1.Gujarat UniversistyAhmedabadIndia
  2. 2.S V National Institute of TechnologySuratIndia

Personalised recommendations