A Study on Parallel Performance of the EULAG F90/95 Code

  • Damian K. Wójcik
  • Marcin J. Kurowski
  • Bogdan Rosa
  • Michał Z. Ziemiański
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7204)


The paper presents several aspects of the computational performance of the EULAG F90/95 code, originally written in Fortran 77. EULAG is a well-established research fluid solver characterized by robust numerics. It is suitable for a wide range of scales of the geophysical flows and is considered as a prospective dynamical core of a future weather forecast model of the COSMO consortium. The code parallelization is based on Message Passing Interface (MPI) communication protocol. In the paper, the numerical model’s parallel performance is examined using an idealized test case that involves a warm precipitating thermal developing over an undulated terrain. Also the efficiency of the basic code structures/subroutines is tested separately. It includes advection, elliptic pressure solver, preconditioner, Laplace equation solver and moist thermodynamics. In addition, the effects of horizontal domain decomposition and of the choice of machine precision on the computational efficiency are analyzed.


Parallel Performance Message Passing Interface Numerical Weather Prediction Double Precision Single Precision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Prusa, J.M., Smolarkiewicz, P.K., Wyszogrodzki, A.A.: EULAG, a computational model for multiscale flows. Comp. Fluids 37(9), 1193–1207 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    The Consortium for Small-scale Modeling (September 2011),
  3. 3.
    Piotrowski, Z.P., Kurowski, M.J., Rosa, B., Ziemianski, M.Z.: EULAG Model for Multiscale Flows – Towards the Petascale Generation of Mesoscale Numerical Weather Prediction. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2009. LNCS, vol. 6068, pp. 380–387. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Held, I.M., Suarez, M.J.: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc. 75(10), 1825–1830 (1994)CrossRefGoogle Scholar
  5. 5.
    Gal-Chen, T., Somerville, R.C.J.: On the use of a coordinate transformation for the solution of the navier-stokes equations. Journal of Computational Physics 17(2), 209–228 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Grabowski, W.W., Smolarkiewicz, P.K.: A multiscale anelastic model for meteorological research. Mon. Weather Rev. 130, 939–956 (2002)CrossRefGoogle Scholar
  7. 7.
    Piotrowski, Z.P., Wyszogrodzki, A.A., Smolarkiewicz, P.K.: Towards petascale simulation of atmospheric circulations with soundproof equations. Acta Geophys. 59(6), 1294–1311 (2011)CrossRefGoogle Scholar
  8. 8.
    Smolarkiewicz, P.K., Skamarock, W.C., Klemp, J.B.: Preconditioned Conjugate—Residual Solvers for Helmholz Equations in Nonhydrostatic Models. Mon. Weather Rev., 587–599 (1996)Google Scholar
  9. 9.
    Smolarkiewicz, P.K., Margolin, L.G.: MPDATA: A finite-difference solver for geophysical flows. J. Comput. Phys. 140, 459–480 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Computing, 2nd edn. Addison-Wesley (2003)Google Scholar
  11. 11.
    INTEL 64 and IA–32 Architectures Optimization Reference Manual (2009)Google Scholar
  12. 12.
    Performance Application Programming Interface (September 2011),

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Damian K. Wójcik
    • 1
  • Marcin J. Kurowski
    • 1
  • Bogdan Rosa
    • 1
  • Michał Z. Ziemiański
    • 1
  1. 1.Institute of Meteorology and Water ManagementNational Research InstituteWarsawPoland

Personalised recommendations