Abstract
In this paper several new approaches to parallelize multi-objective optimization algorithm NSGA-II are proposed, theoretically justified and experimentally evaluated. The proposed strategies are based on the optimization and parallelization of the Pareto ranking part of the algorithm NSGA-II. The speed-up of the proposed strategies have been experimentally investigated and compared with each other as well as with other frequently used strategy on up to 64 processors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Durillo, J.J., Nebro, A.J., Coello, C.A.C., García-Nieto, J., Luna, F., Alba, E.: A Study of Multiobjective Metaheuristics When Solving Parameter Scalable Problems. IEEE Transactions on Evolutionary Computation 14(4), 618–635 (1981)
Sbalzarini, I.F., Muler, S., Koumoutsakos, P.: Multiobjective optimization using Evolutionary Algorithms. In: Proceedings of the Summer Program 2000, Center of Turbulence Research, pp. 63–74 (2000)
Voorneveld, M.: Characterization of Pareto Dominance. SSE/EFI Working Paper Series in Economics and Finance, No. 487 (2002)
Srinivas, N., Deb, K.: Multi-Objective Function Optimization Using Non-dominated Sorting Genetic Algorithms. Evolutionary Computation 2(3), 221–248 (1995)
Mitra, K., Deb, K., Gupta, S.K.: Multiobjective Dynamic Optimization of an Industrial Nylon 6 Semibatch Reactor Using Genetic Algorithms. Journal of Applied Polymer Science 69(1), 69–87 (1998)
Weile, D.S., Michielssen, E., Goldberg, D.E.: Genetic Algorithm Design of Pareto-optimal Broad Band Microwave Absorbers. IEEE Transactions on Electromagnetic Compatibility 38(3), 518–525 (1996)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)
Durillo, J.J., Nebro, A.J., Luna, F., Alba, E.: A study of master-slave approaches to parallelize NSGA-II. In: IEEE International Symposium on Parallel and Distributed Processing, pp. 14–18 (2008)
Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Computing, 2nd edn. Pearson Education Limited, Edinburgh (2003)
Amdahl, G.M.: Validity of the single-processor approach to achieving large scale computing capabilities. In: AFIPS Conference Proceedings, vol. 30, pp. 483–485 (1967)
Branke, J., Schmeck, H., Deb, K., Reddy, M.: Parallelizing Multi-Objective Evolutionary Algorithms: Cone Separation. In: 2004 Congress on Evolutionary Computation (CEC 2004), pp. 1952–1957 (2004)
Deb, K., Zope, P., Jain, S.: Distributed Computing of Pareto-Optimal Solutions with Evolutionary Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 534–549. Springer, Heidelberg (2003)
Streichert, F., Ulmer, H., Zell, A.: Parallelization of Multi-objective Evolutionary Algorithms Using Clustering Algorithms. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 92–107. Springer, Heidelberg (2005)
Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lančinskas, A., Žilinskas, J. (2012). Approaches to Parallelize Pareto Ranking in NSGA-II Algorithm. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2011. Lecture Notes in Computer Science, vol 7204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31500-8_38
Download citation
DOI: https://doi.org/10.1007/978-3-642-31500-8_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31499-5
Online ISBN: 978-3-642-31500-8
eBook Packages: Computer ScienceComputer Science (R0)