Skip to main content

Approaches to Parallelize Pareto Ranking in NSGA-II Algorithm

  • Conference paper
Parallel Processing and Applied Mathematics (PPAM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7204))

Abstract

In this paper several new approaches to parallelize multi-objective optimization algorithm NSGA-II are proposed, theoretically justified and experimentally evaluated. The proposed strategies are based on the optimization and parallelization of the Pareto ranking part of the algorithm NSGA-II. The speed-up of the proposed strategies have been experimentally investigated and compared with each other as well as with other frequently used strategy on up to 64 processors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Durillo, J.J., Nebro, A.J., Coello, C.A.C., García-Nieto, J., Luna, F., Alba, E.: A Study of Multiobjective Metaheuristics When Solving Parameter Scalable Problems. IEEE Transactions on Evolutionary Computation 14(4), 618–635 (1981)

    Article  Google Scholar 

  2. Sbalzarini, I.F., Muler, S., Koumoutsakos, P.: Multiobjective optimization using Evolutionary Algorithms. In: Proceedings of the Summer Program 2000, Center of Turbulence Research, pp. 63–74 (2000)

    Google Scholar 

  3. Voorneveld, M.: Characterization of Pareto Dominance. SSE/EFI Working Paper Series in Economics and Finance, No. 487 (2002)

    Google Scholar 

  4. Srinivas, N., Deb, K.: Multi-Objective Function Optimization Using Non-dominated Sorting Genetic Algorithms. Evolutionary Computation 2(3), 221–248 (1995)

    Article  Google Scholar 

  5. Mitra, K., Deb, K., Gupta, S.K.: Multiobjective Dynamic Optimization of an Industrial Nylon 6 Semibatch Reactor Using Genetic Algorithms. Journal of Applied Polymer Science 69(1), 69–87 (1998)

    Article  Google Scholar 

  6. Weile, D.S., Michielssen, E., Goldberg, D.E.: Genetic Algorithm Design of Pareto-optimal Broad Band Microwave Absorbers. IEEE Transactions on Electromagnetic Compatibility 38(3), 518–525 (1996)

    Article  Google Scholar 

  7. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Durillo, J.J., Nebro, A.J., Luna, F., Alba, E.: A study of master-slave approaches to parallelize NSGA-II. In: IEEE International Symposium on Parallel and Distributed Processing, pp. 14–18 (2008)

    Google Scholar 

  9. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Computing, 2nd edn. Pearson Education Limited, Edinburgh (2003)

    Google Scholar 

  10. Amdahl, G.M.: Validity of the single-processor approach to achieving large scale computing capabilities. In: AFIPS Conference Proceedings, vol. 30, pp. 483–485 (1967)

    Google Scholar 

  11. Branke, J., Schmeck, H., Deb, K., Reddy, M.: Parallelizing Multi-Objective Evolutionary Algorithms: Cone Separation. In: 2004 Congress on Evolutionary Computation (CEC 2004), pp. 1952–1957 (2004)

    Google Scholar 

  12. Deb, K., Zope, P., Jain, S.: Distributed Computing of Pareto-Optimal Solutions with Evolutionary Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 534–549. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Streichert, F., Ulmer, H., Zell, A.: Parallelization of Multi-objective Evolutionary Algorithms Using Clustering Algorithms. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 92–107. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lančinskas, A., Žilinskas, J. (2012). Approaches to Parallelize Pareto Ranking in NSGA-II Algorithm. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2011. Lecture Notes in Computer Science, vol 7204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31500-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31500-8_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31499-5

  • Online ISBN: 978-3-642-31500-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics