Distributed Memory Virtualization with the Use of SDDSfL

  • Arkadiusz Chrobot
  • Maciej Lasota
  • Grzegorz Łukawski
  • Krzysztof Sapiecha
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7204)


Scalable Distributed Data Structures (sdds) are a user–level software component that makes it possible to create a single coherent memory pool out of distributed rams of multicomputer nodes. In other words they are a tool for distributed memory virtualization. Applications that use sdds benefit from a fast data access and a scalability offered by such data structures. On the other hand, adapting an application to work with sdds may require significant changes in its source code. We have proposed an architecture of sdds called sddsfl that overcomes this difficulty by providing sdds functionality for applications in a form of an operating system service. In this paper we investigate usefulness of sddsfl for different types of applications.


Scalable Distributed Data Structures operating system distributed memory virtualization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, R.C., Dasgupta, P.: Implementing consistency control mechanisms in the Clouds distributed operating system. In: ICDCS, pp. 10–17 (1991)Google Scholar
  2. 2.
    Cheriton, D., Goosen, H.A., Boyle, P.D.: ParaDiGM: A Highly Scalable Shared-Memory Multi-Computer Architecture. IEEE Computer 24, 33–46 (1991)CrossRefGoogle Scholar
  3. 3.
    Chrobot, A., Lasota, M., Lukawski, G., Sapiecha, K.: SDDSfL vs. local disk — a comparative study for Linux. Annales UMCS Informatica 10, 29–39 (2010)CrossRefGoogle Scholar
  4. 4.
    Chrobot, A., Lukawski, G., Sapiecha, K.: Scalable Distributed Data Structures for Linux-based Multicomputer. In: International Symposium on Parallel and Distributed Computing, pp. 424–428. IEEE Computer Society (2008)Google Scholar
  5. 5.
    Cook, C.: Memory Virtualization, the Third Wave of Virtualization,
  6. 6.
    Corbet, J., Rubini, A., Kroah-Hartman, G.: Linux Device Drivers, 3rd edn. O’Reilly Media, Inc. (2005)Google Scholar
  7. 7.
    Flouris, M.D., Markatos, E.P.: The Network RamDisk: Using Remote Memory on Heterogeneous NOWs. Cluster Computing 2, 281–293 (1999)CrossRefGoogle Scholar
  8. 8.
    Hines, M.R., Wang, J., Gopalan, K.: Distributed Anemone: Transparent Low-Latency Access to Remote Memory. In: Robert, Y., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC 2006. LNCS, vol. 4297, pp. 509–521. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Hsu, W., Smith, A.J.: The performance impact of I/O optimizations and disk improvements. IBM J. Res. Dev. 48(2), 255–289 (2004)CrossRefGoogle Scholar
  10. 10.
    Kusnetzky, D.: RNA Networks and memory virtualization,
  11. 11.
    Kusnetzky, D.: Sorting out the different layers of virtualization,
  12. 12.
    Lenoski, D., Laudon, J., Gharachorloo, K., Weber, W., Gupta, A., Hennessy, J., Horowitz, M., Lam, M.S.: The Stanford DASH multiprocessor. IEEE Computer 25, 63–79 (1992)CrossRefGoogle Scholar
  13. 13.
    Li, K., Hudak, P.: Memory coherence in shared virtual memory systems. ACM Trans. Comput. Syst. 7(4), 321–359 (1989)CrossRefGoogle Scholar
  14. 14.
    Litwin, W., Neimat, M.A., Schneider, D.: RP*: A Family of Order Preserving Scalable Distributed Data Structures. In: Proceedings of the Twentieth International Conference on Very Large Databases, Santiago, Chile, pp. 342–353 (1994)Google Scholar
  15. 15.
    Litwin, W.: lh*RS p2p: A Scalable Distributed Data Structure for P2P Environment,
  16. 16.
    Litwin, W.: Linear hashing: a new tool for file and table addressing. In: VLDB 1980: Proceedings of the Sixth International Conference on Very Large Data Bases, pp. 212–223. VLDB Endowment (1980)Google Scholar
  17. 17.
    Litwin, W., Neimat, M.A., Schneider, D.A.: LH* — a scalable, distributed data structure. ACM Transactions on Database Systems 21(4), 480–525 (1996)CrossRefGoogle Scholar
  18. 18.
    Manku, G.S., Bawa, M., Raghavan, P., Inc, V.: Symphony: Distributed Hashing in a Small World. In: Proceedings of the 4th USENIX Symposium on Internet Technologies and Systems, pp. 127–140 (2003)Google Scholar
  19. 19.
    Ndiaye, Y., Diene, A., Litwin, W., Risch, T.: AMOS-SDDS: A Scalable Distributed Data Manager for Windows Multicomputers. In: 14th Intl. Conference on Parallel and Distributed Computing Systems – PDCS 2001 (2001)Google Scholar
  20. 20.
    Newhall, T., Finney, S., Ganchev, K., Spiegel, M.: Nswap: A Network Swapping Module for Linux Clusters. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790, pp. 1160–1169. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Nitzberg, B., Lo, V.: Distributed Shared Memory: A Survey of Issues and Algorithms. Computer 24(8), 52–60 (1991)CrossRefGoogle Scholar
  22. 22.
    Protic, J., Tomasevic, M., Milutinovic, V.: A survey of distributed shared memory systems. In: Hawaii International Conference on System Sciences, pp. 74–84 (1995)Google Scholar
  23. 23.
    Purdy, C.: Getting Coherence: Introduction to Oracle Coherence Data Grid,
  24. 24.
    Ratnasamy, S., Francis, P., Shenker, S., Karp, R., Handley, M.: A Scalable Content-Addressable Network. In: Proceedings of ACM SIGCOMM, pp. 161–172 (2001)Google Scholar
  25. 25.
    RNA Networks: Memory Virtualization Primer,
  26. 26.
    Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and Routing for Large-Scale Peer-to-Peer Systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  27. 27.
    Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A Scalable Peer-To-Peer Lookup Service for Internet Applications. In: Proceedings of the 2001 ACM SIGCOMM Conference, pp. 149–160 (2001)Google Scholar
  28. 28.
    Tanenbaum, A.S.: Modern Operating Systems. Pearson Prentice Hall, Upper Saddle River (2008)Google Scholar
  29. 29.
    Warren, D.H.D., Haridi, S.: Data Diffusion Machine - A Scalable Shared Virtual Memory Multiprocessor. In: FGCS, pp. 943–952 (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Arkadiusz Chrobot
    • 1
  • Maciej Lasota
    • 1
  • Grzegorz Łukawski
    • 1
  • Krzysztof Sapiecha
    • 1
  1. 1.Department of Computer ScienceKielce University of TechnologyPoland

Personalised recommendations