Skip to main content

Comparing CUDA, OpenCL and OpenGL Implementations of the Cardiac Monodomain Equations

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7204)

Abstract

Computer simulations of cardiac electrophysiology are a helpful tool in the study of bioelectric activity of the heart. The cardiac monodomain model comprises a nonlinear system of partial differential equations and its numerical solution represents a very intensive computational task due to the required fine spatial and temporal resolution. Recent studies have shown that the use of GPU as a general purpose processor can greatly improve the performance of simulations. The aim of this work is to study the performance of different GPU programming interfaces for the solution of the cardiac monodomain equations. Three different GPU implementations are compared, OpenGL, NVIDIA CUDA and OpenCL, to a CPU multicore implementation that uses OpenMP. The OpenGL approach showed to be the fastest with a speedup of 446 (compared to the multicore implementation) for the solution of the nonlinear system of ordinary differential equations (ODEs) associated to the solution of the cardiac model, whereas CUDA was the fastest for the numerical solution of the parabolic partial differential equation with a speedup of 8. Although OpenCL provides code portability between different accelerators, the OpenCL version was slower for the solution of the parabolic equation and as fast as CUDA for the solution of the system of ODEs, showing to be a portable way of programming scientific applications but not as efficient as CUDA when running on Nvidia GPUs.

Keywords

  • Thread Block
  • CUDA Implementation
  • OpenCL Kernel
  • Monodomain Model
  • Fragment Processor

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-31500-8_12
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-31500-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amorim, R.M., Haase, G., Liebmann, M., dos Santos, R.W.: Comparing CUDA and OpenGL implementations for a Jacobi iteration. In: International Conference on High Performance Computing & Simulation (HPCS 2009). pp. 22–32 (2009)

    Google Scholar 

  2. Luo, C., Rudy, Y.: A model of the ventricular cardiac action potential. depolarization, repolarization, and their interaction. Circ. Res. 68(6), 1501–1526 (1991)

    CrossRef  Google Scholar 

  3. Sato, D., Xie, Y., Weiss, J.N., Qu, Z., Garfinkel, A., Sanderson, A.R.: Acceleration of cardiac tissue simulation with graphic processing units. Med. Biol. Eng. Comput. 47, 1011–1015 (2009)

    CrossRef  Google Scholar 

  4. Plank, G., Liebmann, M., Santos, R.W., Vigmond, E.J., Haase, G.: Algebraic multigrid preconditioner for the cardiac bidomain model. IEEE Trans. Biomed. Eng. 54(4), 585–596 (2007)

    CrossRef  Google Scholar 

  5. Sundnes, J., Lines, G.T., Cai, X., Nielsen, B.F., Mardal, K.A., Tveito, A.: Computing the Electrical Activity in the Heart. Springer (2006)

    Google Scholar 

  6. Maclachlan, M.C., Sundnes, J., Spiteri, R.J.: A comparison of non-standard solvers for odes describing cellular reactions in the heart. Comput. Methods Biomech. Biomed. Engin. 10, 317–326 (2007)

    CrossRef  Google Scholar 

  7. Bell, N., Garland, M.: Efficient Sparse Matrix-Vector Multiplication on CUDA. Tech. rep., NVidia Corporation (2008)

    Google Scholar 

  8. Santos, R.W., Plank, G., Bauer, S., Vigmond, E.J.: Parallel multigrid preconditioner for the cardiac bidomain model. IEEE Trans. Biomed. Eng. 51(11), 1960–1968 (2004)

    CrossRef  Google Scholar 

  9. Rocha, B.M., Campos, F.O., Amorim, R.M., Plank, G., dos Santos, R.W., Liebmann, M., Haase, G.: Accelerating cardiac excitation spread simulations using graphics processing units. Concurrency and Computation: Practice and Experience (2010)

    Google Scholar 

  10. Weber, R., Gothandaraman, A., Hinde, R.J., Peterson, G.D.: Comparing Hardware Accelerators in Scientific Applications: A Case Study. IEEE Transactions on Parallel and Distributed Systems 22, 58–68 (2011)

    CrossRef  Google Scholar 

  11. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing Company (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sachetto Oliveira, R. et al. (2012). Comparing CUDA, OpenCL and OpenGL Implementations of the Cardiac Monodomain Equations. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2011. Lecture Notes in Computer Science, vol 7204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31500-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31500-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31499-5

  • Online ISBN: 978-3-642-31500-8

  • eBook Packages: Computer ScienceComputer Science (R0)