Reversible Circuits: Recent Accomplishments and Future Challenges for an Emerging Technology

(Invited Paper)
  • Rolf Drechsler
  • Robert Wille
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7373)


Reversible circuits build the basis for emerging technologies like quantum computation and have promising applications in domains like low power design. Hence, much progress in the development of design solutions for this kind of circuits has been made in the last decade. In this paper, we provide an overview on reversible circuits as well as their applications. We discuss recent accomplishments and, finally, have a look on future challenges in the design of circuits for this emerging technology.


Quantum Computation Future Challenge Reversible Logic Quantum Circuit Recent Accomplishment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge Univ. Press (2000)Google Scholar
  2. 2.
    Berut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz, E.: Experimental verification of landauer’s principle linking information and thermodynamics. Nature 483, 187–189 (2012)CrossRefGoogle Scholar
  3. 3.
    Wille, R., Drechsler, R., Oswald, C., Garcia-Ortiz, A.: Automatic design of low-power encoders using reversible circuit synthesis. In: Design, Automation and Test in Europe, pp. 1036–1041 (2012)Google Scholar
  4. 4.
    Drechsler, R., Wille, R.: From truth tables to programming languages: Progress in the design of reversible circuits. In: Int’l Symp. on Multi-Valued Logic, pp. 78–85 (2011)Google Scholar
  5. 5.
    Soeken, M., Frehse, S., Wille, R., Drechsler, R.: RevKit: An Open Source Toolkit for the Design of Reversible Circuits. In: De Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7165, pp. 64–76. Springer, Heidelberg (2012), RevKit CrossRefGoogle Scholar
  6. 6.
    Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an online resource for reversible functions and reversible circuits. In: Int’l Symp. on Multi-Valued Logic, pp. 220–225 (2008), RevLib,
  7. 7.
    Wille, R., Offermann, S., Drechsler, R.: SyReC: A programming language for synthesis of reversible circuits. In: Forum on Specification and Design Languages, pp. 184–189 (2010)Google Scholar
  8. 8.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. Theory of Computing, 212–219 (1996)Google Scholar
  9. 9.
    Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Foundations of Computer Science, pp. 124–134 (1994)Google Scholar
  10. 10.
    Vandersypen, L.M.K., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H., Chuang, I.L.: Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883 (2001)CrossRefGoogle Scholar
  11. 11.
    Barenco, A., Bennett, C.H., Cleve, R., DiVinchenzo, D., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. The American Physical Society 52, 3457–3467 (1995)Google Scholar
  12. 12.
    Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for multiple-control toffolli gates. In: Int’l Symp. on Multi-Valued Logic, pp. 288–293 (2011)Google Scholar
  13. 13.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Zeitzoff, P., Chung, J.: A perspective from the 2003 ITRS. IEEE Circuits & Systems Magazine 21, 4–15 (2005)CrossRefGoogle Scholar
  15. 15.
    Gershenfeld, N.: Signal entropy and the thermodynamics of computation. IBM Systems Journal 35(3-4), 577–586 (1996)CrossRefGoogle Scholar
  16. 16.
    Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)zbMATHCrossRefGoogle Scholar
  17. 17.
    Patra, P., Fussell, D.: On efficient adiabatic design of MOS circuits. In: Workshop on Physics and Computation, Boston, pp. 260–269 (1996)Google Scholar
  18. 18.
    Glück, R., Kawabe, M.: A method for automatic program inversion based on LR(0) parsing. Fundamenta Informaticae 66(4), 367–395 (2005)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Abramov, S., Glück, R.: The universal resolving algorithm and its correctness: inverse computation in a functional language. Science of Computer Programming 43(2-3), 193–229 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Maslov, D., Dueck, G.W.: Reversible cascades with minimal garbage. IEEE Trans. on CAD 23(11), 1497–1509 (2004)Google Scholar
  21. 21.
    Miller, D.M., Wille, R., Dueck, G.: Synthesizing reversible circuits for irreversible functions. In: EUROMICRO Symp. on Digital System Design, pp. 749–756 (2009)Google Scholar
  22. 22.
    Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In: Design Automation Conf., pp. 270–275 (2009)Google Scholar
  23. 23.
    Wille, R., Soeken, M., Drechsler, R.: Reducing the number of lines in reversible circuits. In: Design Automation Conf., pp. 647–652 (2010)Google Scholar
  24. 24.
    Wille, R., Keszöcze, O., Drechsler, R.: Determining the minimal number of lines for large reversible circuits. In: Design, Automation and Test in Europe, pp. 1204–1207 (2011)Google Scholar
  25. 25.
    Thomson, M.K., Glück, R.: Optimized reversible binary-coded decimal adders. J. of Systems Architecture 54, 697–706 (2008)CrossRefGoogle Scholar
  26. 26.
    Khan, M.H.A.: Cost reduction in nearest neighbour based synthesis of quantum boolean circuits. Engineering Letters 16, 1–5 (2008)Google Scholar
  27. 27.
    Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest neighbor architectures. Quantum Information Processing 10(3), 355–377 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Chuang, M., Wang, C.: Synthesis of reversible sequential elements. In: ASP Design Automation Conf., pp. 420–425 (2007)Google Scholar
  29. 29.
    Nayeem, N.M., Hossain, M.A., Jamal, L., Babu, H.: Efficient design of shift registers using reversible logic. In: Int’l Conf. on Signal Processing Systems, pp. 474–478 (2009)Google Scholar
  30. 30.
    Himanshu, H., Ranganathan, N.: Design of reversible sequential circuits optimizing quantum cost, delay, and garbage outputs. J. Emerg. Technol. Comput. Syst. 6, 14:1–14:31 (2010)Google Scholar
  31. 31.
    Viamontes, G.F., Markov, I.L., Hayes, J.P.: Checking equivalence of quantum circuits and states. In: Int’l Conf. on CAD, pp. 69–74 (2007)Google Scholar
  32. 32.
    Wille, R., Große, D., Miller, D.M., Drechsler, R.: Equivalence checking of reversible circuits. In: Int’l Symp. on Multi-Valued Logic, pp. 324–330 (2009)Google Scholar
  33. 33.
    Wille, R., Große, D., Frehse, S., Dueck, G.W., Drechsler, R.: Debugging of Toffoli networks. In: Design, Automation and Test in Europe, pp. 1284–1289 (2009)Google Scholar
  34. 34.
    Polian, I., Fiehn, T., Becker, B., Hayes, J.P.: A family of logical fault models for reversible circuits. In: Asian Test Symp., pp. 422–427 (2005)Google Scholar
  35. 35.
    Wille, R., Zhang, H., Drechsler, R.: ATPG for reversible circuits using simulation, Boolean satisfiability, and pseudo Boolean optimization. In: IEEE Annual Symposium on VLSI, pp. 120–125 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rolf Drechsler
    • 1
    • 2
  • Robert Wille
    • 1
  1. 1.Institute of Computer ScienceUniversity of Bremen, Group of Computer ArchitectureBremenGermany
  2. 2.Cyber-Physical SystemsDFKI GmbHBremenGermany

Personalised recommendations