Strategies in Games: A Logic-Automata Study

  • Sujata Ghosh
  • R. Ramanujam
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7388)


Overview. There is now a growing body of research on formal algorithmic models of social procedures and interactions between rational agents. These models attempt to identify logical elements in our day-to-day social activities. When interactions are modeled as games, reasoning involves analysis of agents’ long-term powers for influencing outcomes. Agents devise their respective strategies on how to interact so as to ensure maximal gain. In recent years, researchers have tried to devise logics and models in which strategies are “first class citizens”, rather than unspecified means to ensure outcomes. Yet, these cover only basic models, leaving open a range of interesting issues, e.g. communication and coordination between players, especially in games of imperfect information. Game models are also relevant in the context of system design and verification. In this article we will discuss research on logic and automata-theoretic models of games and strategic reasoning in multi-agent systems. We will get acquainted with the basic tools and techniques for this emerging area, and provide pointers to the exciting questions it offers.


Axiom System Sequential Composition Winning Strategy Dynamic Logic Game Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, J.: How Can the Human Mind Occur in the Physical Universe? Oxford University Press, New York (2007)CrossRefGoogle Scholar
  2. 2.
    van Benthem, J., Ghosh, S., Liu, F.: Modelling simultaneous games with dynamic logic. Knowledge, Rationality and Action 165, 247–268 (2008)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Berlekamp, E., Conway, J., Guy, R.: Winning Ways for Your Mathematical Plays, 2nd edn., vol. 1. A.K. Peters (2001)Google Scholar
  4. 4.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. CUP (2001)Google Scholar
  5. 5.
    Borgo, S.: Coalition in action logic. In: Veloso, M. (ed.) Proceedings of IJCAI 2007, pp. 1822–1827 (2007)Google Scholar
  6. 6.
    Bouton, C.: Nim, a game with a complete mathematical theory. The Annals of Mathematics, 2nd Ser. 3(1/4), 35–39 (1902)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chatterjee, K., Henzinger, T., Piterman, N.: Strategy logic, pp. 59–73. Springer (2007)Google Scholar
  8. 8.
    Chellas, B.: Modal Logic: An Introduction. CUP (1980)Google Scholar
  9. 9.
    Fisher, R., Ury, W., Patton, B.: Getting to Yes: Negotiating Agreements Without Giving in. Penguin Books, Harmondsworth (1995)Google Scholar
  10. 10.
    Gale, D.: The game of hex and Brouwer fixed-point theorem. The American Mathematical Monthly 86, 818–827 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gale, D., Stewart, F.: Infinite games with perfect information. In: Contributions to the Theory of Games, Volume 2. Annals of Mathematics Studies, vol. 28, pp. 245–266. Princeton University Press (1953)Google Scholar
  12. 12.
    Ghosh, S., Meijering, B.: On combining cognitive and formal modeling: a case study involving strategic reasoning. In: Proceedings of the workshop on Reasoning about other minds (RAOM 2011). CEUR Workshop Proceedings, vol. 751, pp. 79–92 (2011)Google Scholar
  13. 13.
    Ghosh, S., Meijering, B., Verbrugge, R.: Logic meets cognition: empirical reasoning in games. In: Proceedings of the 3rd International Workshop on Logics for Resource Bounded Agents (LRBA 2010), in 3rd Multi-Agent Logics, Languages, and Organisations Federated Workshops, MALLOW 2010. CEUR Workshop Proceedings, vol. 627, pp. 15–34 (2010)Google Scholar
  14. 14.
    Ghosh, S., Ramanujam, R., Simon, S.: Playing Extensive Form Games in Parallel. In: Dix, J., Leite, J., Governatori, G., Jamroga, W. (eds.) CLIMA XI. LNCS, vol. 6245, pp. 153–170. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Ghosh, S., Ramanujam, R., Simon, S.: On strategy composition and game composition (2011) (manuscript)Google Scholar
  16. 16.
    Goldblatt, R.: Parallel action: Concurrent dynamic logic with independent modalities. Studia Logica 51, 551–578 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Harel, D., Kozen, D., Parikh, R.: Process logic: Expressiveness, decidability, completeness. Journal of Computer and System Sciences 25(2), 144–170 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. The MIT Press (2000)Google Scholar
  19. 19.
    Hedden, T., Zhang, J.: What do you think I think you think? Strategic reasoning in matrix games. Cognition 85, 1–36 (2002)CrossRefGoogle Scholar
  20. 20.
    van der Hoek, W., Jamroga, W., Wooldridge, M.: A logic for strategic reasoning. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2005), pp. 157–164. ACM Inc., New York (2005)CrossRefGoogle Scholar
  21. 21.
    Juvina, I., Taatgen, N.A.: Modeling control strategies in the n-back task. In: Proceedings of the 8th International Conference on Cognitive Modeling. Psychology Press, New York (2007)Google Scholar
  22. 22.
    Kleene, S.: Representation of events in nerve nets and finite automata. In: Automata Studies. Annals of Mathematics Studies, vol. 34, pp. 3–41. Princeton University Press (1956)Google Scholar
  23. 23.
    Lovett, M.C.: A strategy-based interpretation of Stroop. Cognitive Science 29(3), 493–524 (2005)CrossRefGoogle Scholar
  24. 24.
    Martin, D.: Borel Determinacy. Annals of Mathematics 102, 363–371 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Meijering, B., van Maanen, L., van Rijn, H., Verbrugge, R.: The facilitative effect of context on second-order social reasoning. In: Proceedings of the 32nd Annual Meeting of the Cognitive Science Society. Cognitive Science Society (2010)Google Scholar
  26. 26.
    Monderer, D., Shapley, L.: Potential games. Games and Economic Behaviour 14, 124–143 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Nash, J.: Equilibrium points in n-person games. Proceedings of the National Academy of Sciences 36, 89–93 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Parikh, R.: The logic of games and its applications. Selected Papers of the International Conference on “Foundations of Computation Theory” on Topics in the Theory of Computation, pp. 111–139. Elsevier North-Holland, Inc., New York (1985)Google Scholar
  29. 29.
    Paul, S., Ramanujam, R.: Imitation in large games. In: Proceedings of the First International Symposium on Games, Automata, Logics and Verification (GandALF), pp. 162–172. Electronic Proceedings in Theoretical Computer Science (2010)Google Scholar
  30. 30.
    Paul, S., Ramanujam, R.: Dynamic Restriction of Choices: Synthesis of Societal Rules. In: van Ditmarsch, H., Lang, J., Ju, S. (eds.) LORI 2011. LNCS, vol. 6953, pp. 28–50. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  31. 31.
    Paul, S., Ramanujam, R.: Neighbourhood structure in large games. In: Proceedings of the 13th Conference on the Theoretical Aspects of Rationality and Knowledge (TARK 2011), pp. 121–130 (2011)Google Scholar
  32. 32.
    Paul, S., Ramanujam, R., Simon, S.: Dynamic restriction of choices: A preliminary logical report. In: Proceedings of the 12th Conference on Theoretical Aspects of Rationality and Knowledge (TARK), pp. 218–226 (2009)Google Scholar
  33. 33.
    Paul, S., Ramanujam, R., Simon, S.: Stability under Strategy Switching. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds.) CiE 2009. LNCS, vol. 5635, pp. 389–398. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  34. 34.
    Pauly, M.: Logics for Social Software. Ph.D. thesis. University of Amsterdam (2001)Google Scholar
  35. 35.
    Pinchinat, S.: A Generic Constructive Solution for Concurrent Games with Expressive Constraints on Strategies. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 253–267. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  36. 36.
    Polya, G.: How to Solve It. A New Aspect of Mathematical Method. Princeton University Press, Princeton (1945)zbMATHGoogle Scholar
  37. 37.
    Raiffa, H.: The Art and Science of Negotiation. Harvard University Press, Cambridge (1982)Google Scholar
  38. 38.
    Raiffa, H., Richardson, J., Metcalfe, D.: Negotiation Analysis: The Science and Art of Collaborative Decision Making. Belknap Press of Harvard Univ. Press, Cambridge (2002)Google Scholar
  39. 39.
    Ramanujam, R., Simon, S.: Structured strategies in games on graphs. In: Logic and Automata. Text in Logic and Games, vol. 2, pp. 553–566. AUP (2007)Google Scholar
  40. 40.
    Ramanujam, R., Simon, S.: A Communication Based Model for Games of Imperfect Information. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 509–523. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  41. 41.
    Simon, S.: A logical study of strategies in games. Ph.D. thesis, The Institute of Mathematical Sciences, Chennai (August 2009)Google Scholar
  42. 42.
    Trapa, P., Novak, M.: Nash equilibria for an evolutionary language game. Journal of Mathematical Biology 41, 172–188 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Walther, D., van der Hoek, W., Wooldridge, M.: Alternating-time temporal logic with explicit strategies. In: Proceedings of XIth Conference (Theoretical Aspects of Rationality and Knowledge), pp. 269–278 (2007)Google Scholar
  44. 44.
    Zermelo, E.: Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels. In: Proceedings of the Fifth Congress of Mathematicians, pp. 501–504. CUP (1913)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sujata Ghosh
    • 1
  • R. Ramanujam
    • 2
  1. 1.Indian Statistical InstituteChennaiIndia
  2. 2.The Institute of Mathematical SciencesChennaiIndia

Personalised recommendations