Skip to main content

A Short Introduction to Implicit Computational Complexity

  • Chapter

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7388)

Abstract

These lecture notes are meant to serve as a short introduction to implicit computational complexity for those students who have little or no knowledge of recursion theory and proof theory. They have been obtained by enriching and polishing a set of notes the author wrote for a course (on the same subject) he gave at ESSLLI 2010. These notes are definitely not meant to be comprehensive nor exhaustive, but on the other hand much effort has been done to keep them self-contained.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-31485-8_3
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-31485-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press, New York (2009)

    CrossRef  MATH  Google Scholar 

  2. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press (1998)

    Google Scholar 

  3. Barendregt, H.P.: The Lambda Calculus – Its Syntax and Semantics. North-Holland (1984)

    Google Scholar 

  4. Bellantoni, S., Cook, S.A.: A new recursion-theoretic characterization of the polytime functions. Computational Complexity 2, 97–110 (1992)

    MathSciNet  CrossRef  MATH  Google Scholar 

  5. Bonfante, G., Cichon, A., Marion, J.-Y., Touzet, H.: Algorithms with polynomial interpretation termination proof. Journal of Functional Programming 11(1), 33–53 (2001)

    MathSciNet  CrossRef  MATH  Google Scholar 

  6. Bonfante, G., Marion, J.-Y., Moyen, J.-Y.: Quasi-interpretations a way to control resources. Theoretical Computer Science 412(25), 2776–2796 (2011)

    MathSciNet  CrossRef  MATH  Google Scholar 

  7. Cobham, A.: The intrinsic computational difficulty of functions. In: Bar-Hillel, Y. (ed.) Logic, Methodology and Philosophy of Science, Proceedings of the 1964 International Congress, pp. 24–30. North-Holland (1965)

    Google Scholar 

  8. Cutland, N.: Computability: An Introduction to Recursive Function Theory. Cambridge University Press (1980)

    Google Scholar 

  9. Girard, J.-Y.: Light linear logic. Information and Computation 143(2), 175–204 (1998)

    MathSciNet  CrossRef  MATH  Google Scholar 

  10. Hartmanis, J., Stearns, R.: On the computational complexity of algorithms. Transactions of the American Mathematical Society 117, 285–306 (1965)

    MathSciNet  CrossRef  MATH  Google Scholar 

  11. Hindley, J.R., Seldin, J.P.: Lambda-Calculus and Combinators: An Introduction. Cambridge University Press (2008)

    Google Scholar 

  12. Hofmann, M.: Linear types and non-size-increasing polynomial time computation. Information and Computation 183(1), 57–85 (2003)

    MathSciNet  CrossRef  MATH  Google Scholar 

  13. Kristiansen, L., Niggl, K.-H.: On the computational complexity of imperative programming languages. Theoretical Computer Science 318(1-2), 139–161 (2004)

    MathSciNet  CrossRef  MATH  Google Scholar 

  14. Lafont, Y.: Soft linear logic and polynomial time. Theoretical Computer Science 318(1-2), 163–180 (2004)

    MathSciNet  CrossRef  MATH  Google Scholar 

  15. Leivant, D.: Stratified functional programs and computational complexity. In: Proceedings of Twentieth Annual Symposium on Principles of Programming Languages, pp. 325–333 (1993)

    Google Scholar 

  16. Leivant, D., Marion, J.-Y.: Lambda Calculus Characterizations of Poly-Time. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 274–288. Springer, Heidelberg (1993)

    CrossRef  Google Scholar 

  17. Leivant, D., Marion, J.-Y.: Ramified Recurrence and Computational Complexity II: Substitution and Poly-Space. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 486–500. Springer, Heidelberg (1993)

    CrossRef  Google Scholar 

  18. Marion, J.-Y.: Analysing the implicit complexity of programs. Information and Computation 183(1), 2–18 (2003)

    MathSciNet  CrossRef  MATH  Google Scholar 

  19. Neergaard, P.M.: A Functional Language for Logarithmic Space. In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 311–326. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  20. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1993)

    Google Scholar 

  21. Rogers, H.: The Theory of Recursive Functions and Effective Computability. MIT Press (1987)

    Google Scholar 

  22. Terui, K.: Light affine lambda calculus and polynomial time strong normalization. Archive for Mathematical Logic 46(3-4), 253–280 (2007)

    MathSciNet  CrossRef  MATH  Google Scholar 

  23. Turing, A.: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 2, 230–265 (1937)

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dal Lago, U. (2012). A Short Introduction to Implicit Computational Complexity. In: Bezhanishvili, N., Goranko, V. (eds) Lectures on Logic and Computation. ESSLLI ESSLLI 2011 2010. Lecture Notes in Computer Science, vol 7388. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31485-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31485-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31484-1

  • Online ISBN: 978-3-642-31485-8

  • eBook Packages: Computer ScienceComputer Science (R0)