A Short Introduction to Implicit Computational Complexity

  • Ugo Dal Lago
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7388)


These lecture notes are meant to serve as a short introduction to implicit computational complexity for those students who have little or no knowledge of recursion theory and proof theory. They have been obtained by enriching and polishing a set of notes the author wrote for a course (on the same subject) he gave at ESSLLI 2010. These notes are definitely not meant to be comprehensive nor exhaustive, but on the other hand much effort has been done to keep them self-contained.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press, New York (2009)CrossRefzbMATHGoogle Scholar
  2. 2.
    Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press (1998)Google Scholar
  3. 3.
    Barendregt, H.P.: The Lambda Calculus – Its Syntax and Semantics. North-Holland (1984)Google Scholar
  4. 4.
    Bellantoni, S., Cook, S.A.: A new recursion-theoretic characterization of the polytime functions. Computational Complexity 2, 97–110 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bonfante, G., Cichon, A., Marion, J.-Y., Touzet, H.: Algorithms with polynomial interpretation termination proof. Journal of Functional Programming 11(1), 33–53 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bonfante, G., Marion, J.-Y., Moyen, J.-Y.: Quasi-interpretations a way to control resources. Theoretical Computer Science 412(25), 2776–2796 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cobham, A.: The intrinsic computational difficulty of functions. In: Bar-Hillel, Y. (ed.) Logic, Methodology and Philosophy of Science, Proceedings of the 1964 International Congress, pp. 24–30. North-Holland (1965)Google Scholar
  8. 8.
    Cutland, N.: Computability: An Introduction to Recursive Function Theory. Cambridge University Press (1980)Google Scholar
  9. 9.
    Girard, J.-Y.: Light linear logic. Information and Computation 143(2), 175–204 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hartmanis, J., Stearns, R.: On the computational complexity of algorithms. Transactions of the American Mathematical Society 117, 285–306 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hindley, J.R., Seldin, J.P.: Lambda-Calculus and Combinators: An Introduction. Cambridge University Press (2008)Google Scholar
  12. 12.
    Hofmann, M.: Linear types and non-size-increasing polynomial time computation. Information and Computation 183(1), 57–85 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kristiansen, L., Niggl, K.-H.: On the computational complexity of imperative programming languages. Theoretical Computer Science 318(1-2), 139–161 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lafont, Y.: Soft linear logic and polynomial time. Theoretical Computer Science 318(1-2), 163–180 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Leivant, D.: Stratified functional programs and computational complexity. In: Proceedings of Twentieth Annual Symposium on Principles of Programming Languages, pp. 325–333 (1993)Google Scholar
  16. 16.
    Leivant, D., Marion, J.-Y.: Lambda Calculus Characterizations of Poly-Time. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 274–288. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  17. 17.
    Leivant, D., Marion, J.-Y.: Ramified Recurrence and Computational Complexity II: Substitution and Poly-Space. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 486–500. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  18. 18.
    Marion, J.-Y.: Analysing the implicit complexity of programs. Information and Computation 183(1), 2–18 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Neergaard, P.M.: A Functional Language for Logarithmic Space. In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 311–326. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1993)Google Scholar
  21. 21.
    Rogers, H.: The Theory of Recursive Functions and Effective Computability. MIT Press (1987)Google Scholar
  22. 22.
    Terui, K.: Light affine lambda calculus and polynomial time strong normalization. Archive for Mathematical Logic 46(3-4), 253–280 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Turing, A.: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 2, 230–265 (1937)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ugo Dal Lago
    • 1
  1. 1.Dipartimento di Scienze dell’InformazioneUniversità di BolognaBolognaItaly

Personalised recommendations